3. Cho \(\frac{a}{3}=\frac{b}{4}=\frac{c}{11}\). Tính giá trị biểu thức :
\(A=\frac{b+c-a}{a+c-b}\)
cho \(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\) Tính giá trị của biểu thức P= \(\frac{b+c-a}{a-b+c}\)
Cho a, b, c là 3 số dương. Tính giá trị nhỏ nhất của biểu thức: \(P=\frac{b+c}{a}+\frac{c+a}{b}+\frac{a+b}{c}+\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
Dat \(\hept{\begin{cases}A=\frac{b+c}{a}+\frac{c+a}{b}+\frac{a+b}{c}\\B=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\end{cases}}\)
Ta co:\(A=\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge2+2+2=6\left(1\right)\)
\(B=\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}-3\)
\(=\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)-3\ge\left(a+b+c\right).\frac{9}{2\left(a+b+c\right)}-3=\frac{3}{2}\left(2\right)\)
Cong ve voi ve cua (1) va (2) ta duoc:
\(P=A+B\ge6+\frac{3}{2}=\frac{15}{2}\)
Dau '=' xay ra khi \(a=b=c\)
Chứng minh ĐBT:\(\frac{b}{a}+\frac{a}{b}\ge2\left(a,b\ne0\right)\)(Dấu "="\(\Leftrightarrow a=b=1\))
Ta có: \(\left(a-b\right)^2\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow\frac{a^2+b^2}{ab}\ge2\)
\(\Leftrightarrow\frac{a}{b}+\frac{b}{a}\ge2\left(đpcm\right)\)
Vậy \(\frac{b+c}{a}+\frac{a}{b+c}\ge2\)
\(\frac{a+c}{b}+\frac{b}{c+a}\ge2\)
\(\frac{a+b}{c}+\frac{c}{b+a}\ge2\)
\(\Rightarrow P\ge6\)
Vậy \(P_{min}=6\Leftrightarrow\hept{\begin{cases}a=b+c\\b=a+c\\c=a+b\end{cases}}\)
cho a, b, c >0 và \(\frac{a+b}{3}=\frac{b+c}{4}=\frac{c+a}{5}\)
Tính giá trị biểu thức M= 10a+b-7c+2017
Cho a + b + c = 100 và \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}=\frac{1}{3}\)
Tính giá trị biểu thức : \(S=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
Cho ba số a, b, c thỏa mãn \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\). Tính giá trị biểu thức: \(P=\frac{\left(a^{11}+b^{11}\right)\left(b^9+c^9\right)\left(c^{2001}+a^{2001}\right)}{a^{24}+b^4+c^{2018}}\)
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\)
=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
=> \(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)
=> \(\frac{a+b}{ab}=\frac{-\left(a+b\right)}{\left(a+b+c\right).c}\)
Khi a + b = 0
=> (a + b)(b + c)(c + a) = 0 (2)
Nếu a + b \(\ne0\)
=> ab = -(a + b + c).c
=> ab + (a + b + c).c = 0
=> ab + ac + bc + c2 = 0
=> (a + c)(b + c) = 0
=> (a + b)(b + c)(a + c) = 0 (1)
Từ (2)(1) => (a + b)(b + c)(a + c) = 0 \(\forall a;b;c\)
=> a = -b hoặc b = -c hoặc = c = -a
Nếu a = -b => a11 = -b11 => a11 + b11 = 0
=> P = 0 (3)
Nếu b = -c => b9 = - c9 => b9 + c9 = 0
=>P = 0 (4)
Nếu c = -a => c2001 = -a2001 => c2001 + a2001 = 0
=> P = 0 (5)
Từ (3);(4);(5) => P = 0 trong cả 3 trường hợp
Vạy P = 0
cho ba số a,b,c thỏa mãn a+b+c =6 và \(\frac{c}{a+b}+\frac{b}{a+c}+\frac{a}{b+c}=\frac{3}{2}\).Tính giá trị của biểu thức \(P=\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c=a}\)
ban oi mk dat cau hoi nay cac ban giup mk vs
Ta có :
\(\frac{c}{a+b}+\frac{b}{a+c}+\frac{a}{b+c}=\frac{3}{2}\)
\(\Leftrightarrow\frac{c}{a+b}+1+\frac{b}{a+c}+1+\frac{a}{b+c}+1=\frac{3}{2}+3\)
\(\Leftrightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{a+c}+\frac{a+b+c}{b+c}=\frac{9}{2}\)
\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)=\frac{9}{2}\)
\(\Leftrightarrow6.\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)=\frac{9}{2}\)
\(\Rightarrow\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}=\frac{9}{2}:6=\frac{3}{4}\)
Vậy \(P=\frac{3}{4}\)
Bài 1 Rút gọn biểu thức
\(\frac{\left(x+\frac{1}{x^4}\right)-\left(x^4+\frac{1}{x^4}\right)-2}{\left(x+\frac{1}{x}\right)^4+x^2+\frac{1}{x^2}}.\frac{x^4+1999x^2+1}{2x^2}\)
Bài 2: Cho a,b,c thoả mãn
\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^2}{c^2+ca+a^2}=1006\)
tính giá trị biểu thức
M=\(\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+bc+c^2}+\frac{c^3+a^3}{c^2+ca+a^2}\)
cho 3 số a,b,c khác 0 và đôi một khác nhay và thỏa mãn a+b+c=0. tính giá trị biểu thức P= \(\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)\left(\frac{b-c}{a}+\frac{c-a}{b}+\frac{a-b}{c}\right)\)
Cho 3 số a, b, c khác 0 và khác nhau thỏa mãn điều kiện\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\)
Tính giá trị của biểu thức P= \(\frac{a+b}{c}+\frac{c+a}{b}+\frac{b+c}{a}\)
học tính chất của dãy tỉ số bằng nhau chưa?
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}2a=b+c\\2b=a+c\\2c=a+b\end{cases}}\Rightarrow\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b}{c}=2\)
Vậy \(P=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}=2+2+2=6\)