Những câu hỏi liên quan
NQ
Xem chi tiết
NN
Xem chi tiết
H24
1 tháng 9 2019 lúc 19:59

Dat \(\hept{\begin{cases}A=\frac{b+c}{a}+\frac{c+a}{b}+\frac{a+b}{c}\\B=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\end{cases}}\)

Ta co:\(A=\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)+\left(\frac{c}{a}+\frac{a}{c}\right)\ge2+2+2=6\left(1\right)\)

\(B=\frac{a+b+c}{a+b}+\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}-3\)

\(=\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)-3\ge\left(a+b+c\right).\frac{9}{2\left(a+b+c\right)}-3=\frac{3}{2}\left(2\right)\)

Cong ve voi ve cua (1) va (2) ta duoc:

\(P=A+B\ge6+\frac{3}{2}=\frac{15}{2}\)

Dau '=' xay ra khi \(a=b=c\)

Bình luận (0)
2T
1 tháng 9 2019 lúc 19:56

Chứng minh ĐBT:\(\frac{b}{a}+\frac{a}{b}\ge2\left(a,b\ne0\right)\)(Dấu "="\(\Leftrightarrow a=b=1\))

Ta có: \(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow\frac{a^2+b^2}{ab}\ge2\)

\(\Leftrightarrow\frac{a}{b}+\frac{b}{a}\ge2\left(đpcm\right)\)

Vậy \(\frac{b+c}{a}+\frac{a}{b+c}\ge2\)

\(\frac{a+c}{b}+\frac{b}{c+a}\ge2\)

\(\frac{a+b}{c}+\frac{c}{b+a}\ge2\)

\(\Rightarrow P\ge6\)

Vậy \(P_{min}=6\Leftrightarrow\hept{\begin{cases}a=b+c\\b=a+c\\c=a+b\end{cases}}\)

Bình luận (0)
NK
1 tháng 9 2019 lúc 20:04

dấu = ko xảy ra => tất cả sai:)

Bình luận (0)
DD
Xem chi tiết
Xem chi tiết
DT
Xem chi tiết
XO
3 tháng 4 2021 lúc 6:29

\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\)

=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

=> \(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)

=> \(\frac{a+b}{ab}=\frac{-\left(a+b\right)}{\left(a+b+c\right).c}\)

Khi a + b = 0

=> (a + b)(b + c)(c + a) = 0 (2)

Nếu a + b \(\ne0\)

=> ab = -(a + b + c).c

=> ab + (a + b + c).c = 0

=> ab + ac + bc + c2 = 0

=> (a + c)(b + c) = 0

=> (a + b)(b + c)(a + c) = 0 (1)

Từ (2)(1) => (a + b)(b + c)(a + c) = 0 \(\forall a;b;c\)

=> a = -b hoặc b = -c hoặc = c = -a

Nếu a = -b => a11 = -b11 => a11 + b11 = 0

=> P = 0 (3)

Nếu b = -c => b9 = - c9 => b9 + c9 = 0

=>P = 0 (4)

Nếu c = -a => c2001 = -a2001 => c2001 + a2001 = 0

=> P = 0 (5)

Từ (3);(4);(5) => P = 0 trong cả 3 trường hợp 

Vạy P = 0

Bình luận (0)
 Khách vãng lai đã xóa
H24
3 tháng 4 2021 lúc 6:52

Xyz là ad ak?

Bình luận (0)
 Khách vãng lai đã xóa
GN
Xem chi tiết
H24
4 tháng 8 2017 lúc 21:12

ban oi mk dat cau hoi nay cac ban giup mk vs

Bình luận (0)
H24
4 tháng 8 2017 lúc 21:13

1/2x + 3/5 . ( x- 2 ) = 3

Bình luận (0)
DH
4 tháng 8 2017 lúc 21:14

Ta có :

\(\frac{c}{a+b}+\frac{b}{a+c}+\frac{a}{b+c}=\frac{3}{2}\)

\(\Leftrightarrow\frac{c}{a+b}+1+\frac{b}{a+c}+1+\frac{a}{b+c}+1=\frac{3}{2}+3\)

\(\Leftrightarrow\frac{a+b+c}{a+b}+\frac{a+b+c}{a+c}+\frac{a+b+c}{b+c}=\frac{9}{2}\)

\(\Leftrightarrow\left(a+b+c\right)\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)=\frac{9}{2}\)

\(\Leftrightarrow6.\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)=\frac{9}{2}\)

\(\Rightarrow\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}=\frac{9}{2}:6=\frac{3}{4}\)

Vậy \(P=\frac{3}{4}\)

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
SK
Xem chi tiết
CM
4 tháng 9 2017 lúc 20:11

cac ban oi ket ban voi tui di

Bình luận (0)
TN
4 tháng 9 2017 lúc 20:11

học tính chất của dãy tỉ số bằng nhau chưa?

Bình luận (0)
LH
4 tháng 9 2017 lúc 20:17

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)

\(\Rightarrow\hept{\begin{cases}2a=b+c\\2b=a+c\\2c=a+b\end{cases}}\Rightarrow\frac{b+c}{a}=\frac{c+a}{b}=\frac{a+b}{c}=2\)

Vậy \(P=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}=2+2+2=6\)

Bình luận (0)