Những câu hỏi liên quan
LC
Xem chi tiết
NH
11 tháng 8 2019 lúc 22:58

\(S=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{1012^2}\)

\(S=1+\left(\frac{1}{4}+\frac{1}{9}+...+\frac{1}{1024144}\right)\)

\(S=1+\left(\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+...+\frac{1}{2012\cdot2012}\right)\)

\(S=1+\left(\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+...+\frac{1}{2012}-\frac{1}{2012}\right)\)

\(S=1+\left(\frac{1}{2}-\frac{1}{2012}\right)\)

\(S=1+\frac{1005}{2012}\)

\(S=\frac{3017}{2012}\)

Bình luận (0)
NP
Xem chi tiết
ZX
12 tháng 8 2015 lúc 16:08

Ta có:

1/2 + 1/3 + 1/4 + ... + 1/15 + 1/16 = (1/2 + 1/3 + 1/4 + 1/5) + (1/6 + 1/7 + 1/8) + (1/9 + 1/10 + 1/11) + (1/12 + 1/13 + 1/14) + (1/15 + 1/16)

Vì 1/6 + 1/7 + 1/8 < 3x 1/6 = 1/2

   1/9 + 1/10 + 1/11 <3x1/9 = 1/3

   1/12 + 1/13 +1/14 < 3x1/12 = 1/4

   1/15 + 1/16 < 3 x 1/15 = 1/5

Nên A < 2 x (1/2 + 1/3 + 1/4 + 1/5) < 2 x (1/2 + 1/2 + 1/4 + 1/4) =3 (1)

Lập luận tương tự có:

A = ( 1/2 + 1/3 + 1/4) + (1/5 + 1/6 + 1/7 + 1/8) + (1/9 + 1/10 + 1/11 + 1/12) + (1/13 + 1/14 + 1/15 + 1/16) > (1/2 + 1/3 + 1/4) + 4 x 1/8 + 4 x 1/ 12 + 4 x 1/16

Hay A > 2 x (1/2 + 1/3 + 1/4) > 2 x (1/2 + 1/4 + 1/4) = 2 (2)

Từ (1) và (2) ta có 2 < A < 3. Vậy A không phải là số tự nhiên.

Bình luận (0)
H24
18 tháng 3 2017 lúc 20:55

\(\frac{1}{2}+\frac{1}{3}+.........+\frac{1}{16}=2,380728993ma2,380728993\) ko phải số tự nhiên nên S ko phải số tự nhiên

Bình luận (0)
NH
21 tháng 3 2019 lúc 7:21

ban pham le kim thuy sai roi

Bình luận (0)
TS
Xem chi tiết
LV
24 tháng 4 2016 lúc 16:26

Ta có:\(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2012^2}>0\)

Vì:  \(\frac{1}{2^2}<\frac{1}{1.2}\)

\(\frac{1}{3^2}>\frac{1}{2.3}\)

\(\frac{1}{4^2}>\frac{1}{3.4}\)

..........

\(\frac{1}{2012^2}>\frac{1}{2011.2012}\)

\(\Rightarrow A<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2011.2012}\)

\(\Rightarrow A<1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}\)

\(\Rightarrow A<1-\frac{1}{2012}\)

\(\Rightarrow A<1\)

Vì A>0;A<1

=>A không phải số tự nhiên

=>ĐPCM

Bình luận (0)
NP
24 tháng 4 2016 lúc 16:22

Quy đồng A lên thì tử số chia hết cho 20112 còn mẫu số không chia hết cho 20112 vì có \(\frac{1}{2011^2}\) khi quy đồng thì tử không chia hết cho 20112

Vậy A không phải là số tự nhiên

Bình luận (0)
LV
24 tháng 4 2016 lúc 16:27

chọn đúng cho mk nha

Bình luận (0)
HD
Xem chi tiết
PT
Xem chi tiết
TA
Xem chi tiết

Ta có : \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)

\(=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}>1\left(1\right)\)

Ta lại có : \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)

\(=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)

\(=1+\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{n.n}\)

\(< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\)

\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(=2-\frac{1}{n}< 2\left(2\right)\)

Từ (1) và (2) : \(\Rightarrow1< \frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 2\)

\(\Rightarrowđpcm\)

Bình luận (0)
 Khách vãng lai đã xóa
GF
21 tháng 7 2021 lúc 18:02

undefinedk cho

mk nha cảm ơn

các bn nhé!!!!

Bình luận (0)
 Khách vãng lai đã xóa
XO
21 tháng 7 2021 lúc 17:24

Ta có \(\frac{1}{2^2}=\left(\frac{1}{2}\right)^2>0;\frac{1}{3^2}=\left(\frac{1}{3}\right)^2>0;...;\frac{1}{n^2}=\left(\frac{1}{n}\right)^2>0\)

=> \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}>0\)

=> \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}>1\)(1)

Lại có \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}=1+\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{n.n}\)

\(< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\)

\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}\)

\(=2-\frac{1}{n+1}< 2\)

=> \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{n^2}< 2\)(2)

Từ (1) và (2) => \(1< \frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 2\)

=> \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)không là 1 số tự nhiên 

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết
LN
Xem chi tiết
IY
5 tháng 7 2018 lúc 20:49

ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};...;\frac{1}{45^2}< \frac{1}{44.45}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{45^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}...+\frac{1}{44.45}\)

                                                                         \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{44}-\frac{1}{45}\)

                                                                              \(=1-\frac{1}{45}< 1\) (1)

mà \(\frac{1}{2^2}>0;\frac{1}{3^2}>0;\frac{1}{4^2}>0;...;\frac{1}{45^2}>0\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{45^2}>0\)(2)

Từ (1);(2) \(\Rightarrow0< M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{45^2}< 1\)

=> M không phải là số tự nhiên ( đ p c m)

Bình luận (0)
HT
Xem chi tiết
TT
7 tháng 3 2021 lúc 21:22

ko bít

Bình luận (0)
 Khách vãng lai đã xóa
DT
7 tháng 3 2021 lúc 21:29

CHỊU THÔI KO BÍT :-D

Bình luận (0)
 Khách vãng lai đã xóa
DT
7 tháng 3 2021 lúc 21:31

nói là phân số nên nói ko phải số tự nhiên

Bình luận (0)
 Khách vãng lai đã xóa