cho tam giác ABC có AB=15cm,AC=12 trên hai cạnh AB và AC lấy 2 điểm D và E sao cho AD=8cm;AE=6cm
a,chứng minh tam giác AED tương đương tam giác ABC
b,tính chu vi tam giác ADE biết BC=25cm
c, Tính góc ADE biết góc C=20độ
Cho tam giác ABC, trong đó AB = 15cm, AC = 20cm. Trên hai cạnh AB và AC lần lượt lấy hai điểm D và E sao cho AD = 8cm, AE = 6cm. Hai tam giác ABC và ADE có đồng dạng với nhau không? Vì sao?
Cho tam giác ABC, trong đó AB = 15cm, AC = 20cm. Trên hai cạnh AB và AC lần lượt lấy hai điểm D và E sao cho AD = 8cm, AE = 6cm. Hai tam giác ABC và ADE có đồng dạng với nhau không? Vì sao?
Cho tam giác ABC có AB=15cm ; AC=20cm . Trên cạnh AB lấy điểm D sao cho AD=8cm ; trên cạnh AC lấy E sao cho AE=6cm . Tính tỉ số diện tích của 2 tam giác AED và ABC
Xét tam giác AED Và Tam giác ABC có : Góc A chung và \(\frac{AE}{AB}=\frac{6}{15}=\frac{2}{5},\frac{AD}{AC}=\frac{8}{20}=\frac{2}{5}\) suy ra tam giác AED đồng dạng với tam giác ABC (cgc) suy ra \(S_{AED}:S_{ABC}=\left(\frac{AE}{AB}\right)^2=\left(\frac{2}{5}\right)^2=\frac{4}{25}\)
Cho tam giác ABC trong đó AB = 15cm, AC =20cm. Trên hai cạnh AB và AC lần lượt lấy điểm D và E sao cho AD =8cm, AE = 6cm.
a,CM:▲ABC~▲ADE
b,tính DE
c,tia phân giác của A cắt BC tại I.chứng minh rằng: IB.AE=IC.AD
Sửa đề: Tam giác ABC vuông tại A. Câu c. C/m IB.AD=IC.AE
a.
Ta có:
\(\dfrac{AE}{AB}=\dfrac{6}{15}=\dfrac{2}{5};\dfrac{AD}{AC}=\dfrac{8}{20}=\dfrac{2}{5}\)
\(\Rightarrow\dfrac{AE}{AB}=\dfrac{AD}{AC}\)
Xét tam giác ABC và tam giác AED,có:
\(\dfrac{AE}{AB}=\dfrac{AD}{AC}\) ( cmt )
\(\widehat{A}:chung\)
Vậy tam giác ABC dồng dạng tam giác AED ( c.g.c )
b.
Áp dụng định lý pitago vào tam giác vuông ABC, có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow BC=\sqrt{15^2+20^2}=\sqrt{625}=25cm\)
Ta có: tam giác ABC dồng dạng tam giác AED ( c.g.c )
\(\Rightarrow\dfrac{AD}{AC}=\dfrac{DE}{BC}\)
\(\Leftrightarrow\dfrac{2}{5}=\dfrac{DE}{25}\)
\(\Leftrightarrow5DE=50\)
\(\Leftrightarrow DE=10cm\)
c.Áp dụng t/c đường phân giác góc A, ta có:
\(\dfrac{AB}{AC}=\dfrac{IB}{IC}\)
Mà \(\dfrac{AB}{AC}=\dfrac{AE}{AD}\) ( 2 tam giác đồng dạng )
\(\Rightarrow\dfrac{AE}{AD}=\dfrac{IB}{IC}\)
\(\Leftrightarrow IB.AD=IC.AE\)
Cho tam giác ABC trong đó AB = 15 cm, AC = 80 cm. Trên hai cạnh AB và AC lần lượt lấy hai điểm D và E sao cho AD = 8cm, AE = 6cm. Hai tam giác ABC và ADE có đồng dạng với nhau không ? Vì sao ?
Cho tam giác ABC có AB =15cm AC =20cm trên cạnh AB lấy điểm D sao cho AD bằng 10cm trên cạnh AC lấy điểm E sao cho AE =15cm nối D với E tính diện tích tam giác ABC biết diện tích tam giác ADE =45cm2
Mình biểu diễn bằng hình vẽ trên.
Xét EAD và EDB chung đỉnh E, đáy AD gấp 2 lần đáy DB (10 : (15 -10) = 2)
=> S_EAD gấp 2 lần S_EDB => Diện tích EDB = 45 : 2 = 22,5 (cm2)
Diện tích BAE là : 45 + 22,5 = 67,5 (cm2)
Xét tam giác BAE và tam giác AEC có chung đỉnh B và đáy AE gấp 3 lần đáy EC (15 : (20-15) = 3)
=> Diện tích BAE gấp 3 lần diện tích AEC. Vậy diện tích AEC là : 67,5 : 3 =22,5 (cm2)
Vậy diện tích ABC là : 67,5 + 22,5 = 90 (cm2)
Cho tam giác ABC có AB=6cm, AC=8cm. Trên cạnh AB lấy điểm D sao cho AD=4cm. Trên cạnh AC lấy điểm E sao cho AE=3cm. a)Chứng minh tam giác AED đồng dạng với tam giác ABC
b) Gọi O là giao điểm của BE và CD. Tính tỉ số diện tích của hai tam giác OBD và OCE
Cho hình tam giác ABC có AB= 15cm, AC = 20cm .Trên cạnh AB lấy điểm D sao cho AD = 10cm. Trên cạnh AC lấy diểm E sao cho AE= 15cm. Tính S hình tam giác ABC biết S hình tam giác ADE bằng 45cm2
Cho tam giác ABC có AB=8cm,AC=12cm.Trên cạnh AB lấy điểm D sao cho BD=2cm,trên cạnh AC lấy điểm E sao cho AE=8cm
Tính các tỉ số AE/AD;AD/AC