Tìm nghiệm nguyên của pt: \(x^2-2xy+2y^2-4x=\)\(-8\)
Cho (x,y) là nghiệm của pt: \(x^2y+2xy-4x+y=0\). Tìm giá trị lớn nhất của y
(x+1)2 .y = 4x
+x =- 1 không thỏa mãn
+ \(y=\frac{4x}{\left(x+1\right)^2}=\frac{4x-\left(x+1\right)^2}{\left(x+1\right)^2}+1=-\frac{\left(x-1\right)^2}{\left(x+1\right)^2}+1\le1\)
=>y max = 1 => x =1
Nguyễn Nhật Minh cảm ơn rất nhiều
cho (x,y) là nghiệm của pt \(x^2y+2xy-4x+y=0\). Tìm giá trị lớn nhất của y.
Coi PT là PT bậc 2 ẩn x rồi xét đenta
Ngô Mạnh Kiên cậu giải ra giúp mk đc ko?
\(\Delta\)=b^2-4ac=4y^2-4(-4x+y)*y=4y^2+16xy-4y^2=16xy>0
theo cauchy 16xy<=256X^2+y^2
=>16x=y=0
tìm nghiệm nguyên của pt
\(x^2+xy+y^2=x^2y^2\)
Ta có x2 + xy + y2 = x2 y2
<=> (x + y)2 = xy(xy + 1)
Mà x2 y2\(\le\)xy(xy + 1) \(\le\)(xy + 1)2
Không tồn tại số chính phương giữa 2 số chính phương liên tiếp nên để xy(xy + 1) là số chính phương thì nó phải là 1 trong hai số chính phương liên tiếp đó hay xy(xy + 1) = 0
Kết hợp với phương trình đầu thì nghiệm nguyên cần tìm là (x,y) = (0,0; 1,-1; -1,1)
tìm nghiệm nguyên của pt
\(x^2+xy+y^2=x^2y^2\)
sao ra x=y đc nhỉ
pt đã cho có dạng \(4x^2+8xy+4y^2+1=4x^2y^2+4xy+1\Leftrightarrow4\left(x+y\right)^2-\left(2xy-1\right)^2=-1\)
\(\Leftrightarrow\left(2x+2y+2xy-1\right)\left(2x+2y-2xy+1\right)=-1\)
Đến đây lập bảng nhé => được x y
\(x^2+xy+y^2=x^2y^2.\)
+ x =0; y =0 là nghiệm
+ x y khác 0
\(\frac{x}{y}+\frac{y}{x}=xy-1\in Z\)
=> x =y
=> 3x2 =x4 => x2 = 3 loại
Vậy x = y =0 là nghiệm duy nhất
Tìm nghiệm nguyên của pt:
\(x^2+\sqrt{x+1}=y^2.\)
tìm nghiệm nguyên dương của pt
\(x^2-y^2=6y+44\)
Ta có x2 - y2 = 6y + 44
<=> x2 - (y + 3)2 = 35
<=> (x - y - 3)(x + y + 3) = 5×7
<=> \(\hept{\begin{cases}x-y-3=7\\3+x+y=5\end{cases}}\)hoặc \(\hept{\begin{cases}x-y-3=5\\3+x+y=7\end{cases}}\)hoặc \(\hept{\begin{cases}x-y-3=1\\3+x+y=15\end{cases}}\)hoặc \(\hept{\begin{cases}x-y-3=15\\3+x+y=1\end{cases}}\)
Vậy (x; y) = (8; 4)
1.Số nghiệm của pt x2 -2x-8=4 căn (4-x)(x+2)
2.Cho hình vuông ABCD Tính (vectơ AB,BD)
3. Tìm m để hệ pt y+x2=x(1) 2x+y-m=0 Có nghiệm.
Bài 1: tìm x biết:
a)(x-8 ).( x3+8)=0
b)( 4x-3)-( x+5)=3.(10-x )
bài 2: cho hai đa thức sau:
f( x)=( x-1).(x+2 )
g(x)=x3+ax2+bx+2
Xác định a và b biết nghiệm của đa thức f(x)cũng là nghiệm của đa thức g(x)
Bài 1.
a.\(\left(x-8\right)\left(x^3+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-8=0\\x^3+8=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
b.\(\left(4x-3\right)-\left(x+5\right)=3\left(10-x\right)\)
\(\Leftrightarrow4x-3-x-5=30-3x\)
\(\Leftrightarrow4x-x+3x=30+5+3\)
\(\Leftrightarrow6x=38\)
\(\Leftrightarrow x=\dfrac{19}{3}\)
Bài 1:
a. $(x-8)(x^3+8)=0$
$\Rightarrow x-8=0$ hoặc $x^3+8=0$
$\Rightarrow x=8$ hoặc $x^3=-8=(-2)^3$
$\Rightarrow x=8$ hoặc $x=-2$
b.
$(4x-3)-(x+5)=3(10-x)$
$4x-3-x-5=30-3x$
$3x-8=30-3x$
$6x=38$
$x=\frac{19}{3}$
Bài 2:
$f(x)=(x-1)(x+2)=0$
$\Leftrightarrow x-1=0$ hoặc $x+2=0$
$\Leftrightarrow x=1$ hoặc $x=-2$
Vậy $g(x)$ cũng có nghiệm $x=1$ và $x=-2$
Tức là:
$g(1)=g(-2)=0$
$\Rightarrow 1+a+b+2=-8+4a-2b+2=0$
$\Rightarrow a=0; b=-3$
tìm nghiệm nguyên nhỏ nhất của pt:
a) 16x-25y=1
b) 41x-37y=187
c) hệ pt: \(\int^{x+2y+3z=20}_{3x+5y+4z=37}\)
c) { x +2y +3z =20
{3x+5y +4z =37
{ -3x - 6y - 9z = -60
{ 3x + 5y + 4z = 37
Cộng lại : -y - 5z = -23
<=> y + 5z = 23
<=> y = 23 - 5z
{ x +2y +3z =20
{3x+5y +4z =37
{ -5x - 10y - 15z = -100
{ 6x + 10y + 8z = 74
Cộng
=> -x - 7z = -26
<=> x = 26 - 7z
<=> (26 - x)/7 = z
=> y = 23 - 5( 26 - x )/7
Thế : Ta tính được :
x = 7n + 2
y = 3 - 5n
z = n + 4
Vậy 3 - 5n ≥ 0
<=> -5n ≥ -3
<=> n ≤ 3/5
(3 - y)/5 = n
Vì z = n + 4 nguyên dương thì n nguyên luôn thì (3 - y)/5 chia hết
Bắt đầu y = 3 là số nguyên nhỏ nhất
y = 3 => n = 0 => z = 4 và x = 2
y = 8 => n = -1 => z = 3 và x = -5 ( loại do x là nguyên âm)
Như vậy cặp số nguyên nhỏ nhất (x ; y ; z) = (2 ; 3 ; 4)
a/
x= (25y + 1)/16 = y + (9y+1)/16
Gọi k nguyên nhỏ nhất k = (9y+1)/16
y= (16k-1)/9 = (18k-2k -1)/9 = 2k - (2k+1)/9
Ta thấy k=4 thỏa
=> y =7 => x=11
b/ 41x-37y=187
x= (187 + 37y)/41 = [(164 + 41y) + 23 -4y]/41 = 4 + y + (23-4y)/41
Gọi k nguyên nhỏ nhất k=(23-4y)/41
=> y = (23- 41k)/4 = (24 -40k -1-k)/4 = 6 -10k -(1+k)/4
=> (1+ k)/4 nguyên
=> k=-1
=> y=16
=> x=19