Những câu hỏi liên quan
LN
Xem chi tiết
TT
13 tháng 8 2015 lúc 8:15

a) x^4 - x^3 + ax + b chia  cho x^2 -x - 2 dư 2x - 3 

=> x^4 - x^3 + ax + b = ( x^2 - x - 2 ) q(x) + 2x - 3 

=> x^4 - x^3 + ax + b = (  x + 1 )(x- 2 ) q(x) + 2x - 3 

Thay x = 2 ta có :

       2^4 - 2^3 + 2a + b = 0 + 2.2 - 3

        16  - 8 + 2a + b = 1

          8 + 2a + b = 1 

               2a + b     = -7 => b = -7 - 2a 

Thay x = -1 ta có :

           (-1)^4 - (-1)^3 + (-1).a + b = 0 + 2(-1) - 3

            1 + 1 - a + b                = -2 - 3

                2 - a + b                = -5

                  -a + b                  = - 7 

Thay b = -7 - 2 a ta có :

                  -a + -7 - 2a             = -7

                     -3a - 7                  = -7

                        -a                        = 0

                         a = 0 

b = - 7 -2a = -7 - 0 = -7 

Vậy a = 0 ; b = -7 

 

Bình luận (0)
LN
Xem chi tiết
TV
10 tháng 12 2017 lúc 9:16

khó quá

Bình luận (0)
PD
13 tháng 10 2018 lúc 22:30

Vì \(2x^3+ax+b\)chia x + 1 dư - 6

=> \(2x^3+ax+b=\left(x+1\right)Q-6\)

Với x = -1

\(\Rightarrow-2-a+b=-6\)

\(b-a=-6+2=-4\)(1)

Vì \(2x^3+ax+b\)chia x - 2 dư 21

\(\Rightarrow2x^3+ax+b=\left(x-2\right)f\left(x\right)+21\)

Với x = 2

\(16+2a+b=21\)

\(2a+b=5\)(2)

Từ (1) và (2) => a - b = 4 =>a=4+b; 2a +b = 5=>8+2b+b=5=>3b=-3<=> b = -1

=> a = 4-1=3

Bình luận (0)
TV
Xem chi tiết
NP
10 tháng 12 2017 lúc 22:10

Bài 1: 
a) (27x^2+a) : (3x+2) được thương là 9x - 6, dư là a + 12. 
Để 27x^2+a chia hết cho (3x+2) thì số dư a+12 =0 suy ra a = -12.

b, a=-2 
c,a=-20 

Bài2.Xác định a và b sao cho 
a)x^4+ax^2+1 chia hết cho x^2+x+1 
b)ax^3+bx-24 chia hết cho (x+1)(x+3) 
c)x^4-x^3-3x^2+ax+b chia cho x^2-x-2 dư 2x-3 
d)2x^3+ax+b chia cho x+1 dư -6, x-2 dư 21

Giải

a) Đặt thương của phép chia x^4+ax^2+1 cho x^2+x+1 là (mx^2 + nx + p) (do số bị chia bậc 4, số chia bậc 2 nên thương bậc 2) 
<=> x^4 + ax^2 + 1 = (x^2+ x+ 1)(mx^2 + nx + p) 
<=> x^4 + ax^2 + 1 = mx^4 + nx^3 + px^2 + mx^3 + nx^2 + px + mx^2 + nx + p (nhân vào thôi) 
<=> x^4 + ax^2 + 1 = mx^4 + x^3(m + n) + x^2(p + n) + x(p + n) + p 
Đồng nhất hệ số, ta có: 
m = 1 
m + n = 0 (vì )x^4+ax^2+1 không có hạng tử mũ 3 => hê số bậc 3 = 0) 
n + p = a 
n + p =0 
p = 1 
=>n = -1 và n + p = -1 + 1 = 0 = a 
Vậy a = 0 thì x^4 + ax^2 + 1 chia hết cho x^2 + 2x + 1 
Mấy cái kia làm tương tự, có dư thì bạn + thêm vào, vd câu d: 
Đặt 2x^3+ax+b = (x + 1)(mx^2 + nx + p) - 6 = (x - 2)(ex^2 + fx + g) + 21 

b) f(x)=ax^3+bx-24; để f(x) chia hết cho (x+1)(x+3) thì f(-1)=0 và f(-3)=0 
f(-1)=0 --> -a-b-24=0 (*); f(-3)=0 ---> -27a -3b-24 =0 (**) 
giải hệ (*), (**) trên ta được a= 2; b=-26 

c) f(x) =x^4-x^3-3x^2+ax+b 
x^2-x-2 = (x+1)(x-2). Gọi g(x) là thương của f(x) với (x+1)(x-2). Khi đó: 
f(x) =(x+1)(x-2).g(x) +2x-3 
f(-1) =0+2.(-1)-3 =-5; f(2) =0+2.2-3 =1 
Mặt khác f(-1)= 1+1-3-a+b =-1-a+b và f(2)=2^4-2^3-3.2^2+2a+b = -4+2a+b 
Giải hệ: -1-a+b=-5 và -4+2a+b =1 ta được a= 3; b= -1 

d) f(x) =2x^3+ax+b chia cho x+1 dư -6, x-2 dư 21. vậy f(-1)=-6 và f(2) =21 
f(-1) = -6 ---> -2-a+b =-6 (*) 
f(2)=21 ---> 2.2^3+2a+b =21 ---> 16+2a+b=21 (**) 
Giải hệ (*); (**) trên ta được a=3; b=-1

Bình luận (0)
NH
Xem chi tiết
PH
Xem chi tiết
H24
9 tháng 4 2020 lúc 15:52

\(f(x) = 2x^3 + ax + b\)

Gọi \(f(x) = 2x^3 + ax+b = (x+1).Q(x) + 6 \)  (1)

\(f(x) = 2x^3 + ax + b = (x-2).H(x) + 21\)  (2)

Thay x = -1 vào (1) ta được : 

\(-2 - a + b = 6 => b-a = 8\)  (3)

Thay x = 2 vào (2) ta được : 

\(16+2a+b=21 => 2a + b = 5\)  (4)

Từ (3) và (4) \(=> b-a - 2a - b = 8-5 \)

\(=> -3a = 3 <=> a = -1 => b = 7\)

Bình luận (0)
 Khách vãng lai đã xóa
FF
Xem chi tiết
TM
Xem chi tiết
LQ
Xem chi tiết
ST
Xem chi tiết