Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
VD
Xem chi tiết
LD
13 tháng 12 2021 lúc 19:41

vì a2=bc=\(\Rightarrow\frac{a}{b}\)=\(\frac{c}{a}\)

đặt \(\frac{a}{b}\)=\(\frac{c}{a}\)=k(k\(\ne\)0)\(\Rightarrow\)a=bk (1) ; c=ak(2)        thay (1) vào \(\frac{a+b}{a-b}\)ta có \(\frac{bk+b}{bk-b}\)=\(\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\)

thay (2) vào \(\frac{c+a}{c-a}\) ta có: \(\frac{ak+a}{ak-a}=\frac{a\left(k+1\right)}{a\left(k-1\right)}=\frac{k+1}{k-1}\)

do đó : \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)

Bình luận (0)
 Khách vãng lai đã xóa
BA
Xem chi tiết
SG
29 tháng 10 2016 lúc 21:14

Ta có: 2bd = c(b + d)

=> (a + c).d = bc + cd

=> ad + cd = bc + cd

=> ad = bc

=> \(\frac{a}{b}=\frac{c}{d}\left(đpcm\right)\)

Bình luận (0)
ND
15 tháng 1 2018 lúc 13:54

Ta có : 2bd = c (b + d )

=) ( a + c ). d = bc + cd

=) ad + cd = bc + cd

=) ad = bc

=) a/b = c/ d ( đpcm)

Bình luận (0)
H24
22 tháng 3 2018 lúc 21:31

Ta có : 2bd = c (b + d )

 => ( a + c ). d = bc + cd 

=>ad + cd = bc + cd 

=>ad = bc 

=> a/b = c/ d ( đpcm)

Bình luận (0)
HT
Xem chi tiết
ST
15 tháng 7 2017 lúc 12:35

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Theo tính chất dãy tỉ số bằng nhau có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)

\(\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)

Bình luận (0)
ER
15 tháng 7 2017 lúc 12:45

ta có a+b/a-b=c+d/c-d

suy ra (a+b)(c-d)=(a-b)(c+d)

ac-ad+bc-bd=ac+ad-bc-bd

ac-ac+bc+bc-bd+bd=ad+ad

2bc=2ad 

nen bc=ad=a/b=c/d

vay tu a/b=c/d ta co the suy ra a+b/a-b=c+d/c-d

Bình luận (0)
PC
Xem chi tiết
PC
13 tháng 7 2016 lúc 15:06

 minh can gap  lam

Bình luận (0)
HG
13 tháng 7 2016 lúc 15:08

a2 = bc

=> a.a = b.c

=> \(\frac{a}{c}=\frac{b}{a}=\frac{a+b}{c+a}=\frac{a-b}{c-a}\)

=> \(\frac{a+b}{c+a}=\frac{a-b}{c-a}\)

=> \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)(Đpcm)

Bình luận (0)
NT
Xem chi tiết
DT
Xem chi tiết
DK
Xem chi tiết
TD
16 tháng 7 2017 lúc 20:20

Ta có :

\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}=\frac{2ab}{2cd}=\frac{a^2+b^2+2ab}{c^2+d^2+2cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\left(\frac{a+b}{c+d}\right)^2\left(1\right)\)

\(\frac{a^2+b^2}{c^2+d^2}-\frac{2ab}{2cd}=\frac{a^2+b^2-2ab}{c^2+d^2-2cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}=\left(\frac{a-b}{c-d}\right)^2\left(2\right)\)

Từ ( 1 ) và ( 2 ) suy ra : \(\left(\frac{a+b}{c+d}\right)^2=\left(\frac{a-b}{c-d}\right)^2\)

TH1 : \(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{\left(a+b\right)+\left(a-b\right)}{\left(c+d\right)+\left(c-d\right)}=\frac{2a}{2c}=\frac{a}{b}\left(3\right)\)

        \(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{\left(a+b\right)-\left(a-b\right)}{\left(c+d\right)-\left(c-d\right)}=\frac{2b}{2d}=\frac{b}{d}\left(4\right)\)

từ ( 3 ) và ( 4 ) suy ra : \(\frac{a}{c}=\frac{b}{d}\text{ hay }\frac{a}{b}=\frac{c}{d}\)

TH2 : \(\frac{a+b}{c+d}=\frac{b-a}{c-d}=\frac{\left(a+b\right)+\left(b-a\right)}{\left(c+d\right)+\left(c-d\right)}=\frac{2b}{2c}=\frac{b}{c}\left(5\right)\)

     \(\frac{a+b}{c+d}=\frac{b-a}{c-d}=\frac{\left(a+b\right)-\left(b-a\right)}{\left(c+d\right)-\left(c-d\right)}=\frac{2a}{2d}=\frac{a}{d}\left(6\right)\)

Từ ( 5 ) và ( 6 ) suy ra : \(\frac{b}{c}=\frac{a}{d}\text{ hay }\frac{a}{b}=\frac{d}{c}\)

Vậy : \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\text{ thì }\orbr{\begin{cases}\frac{a}{b}=\frac{c}{d}\\\frac{a}{b}=\frac{d}{c}\end{cases}}\)

kinh quá

Bình luận (0)
H24
Xem chi tiết
TT
4 tháng 2 2020 lúc 12:46

Ta có : \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

\(\Leftrightarrow\left(a^2+b^2\right)cd=ab\left(c^2+d^2\right)\)

\(\Leftrightarrow a^2cd+b^2cd=abc^2+abd^2\)

\(\Leftrightarrow\left(a^2cd-abd^2\right)+\left(b^2cd-abc^2\right)=0\)

\(\Leftrightarrow ad\left(ac-bd\right)-bc\left(ac-bd\right)=0\)

\(\Leftrightarrow\left(ac-bd\right)\left(ad-bc\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}ac=bd\\ad=bc\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{a}{b}=\frac{c}{d}\\\frac{a}{b}=\frac{d}{c}\end{cases}}\) (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
HT
Xem chi tiết
TN
9 tháng 2 2018 lúc 21:23

Ta có 2bd=c(b+d) \(=>\frac{2b}{c}=\frac{b+d}{d}\)

Mà a+c=2b nên \(\frac{a+c}{c}=\frac{b+d}{d}=>\frac{a+c}{b+d}=\frac{c}{d}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có:

\(\frac{a+c}{b+d}=\frac{c}{d}=\frac{a+c-c}{b+d-d}=\frac{a}{b}\)

Vậy \(\frac{a}{b}=\frac{c}{d}\)

Bình luận (0)