Những câu hỏi liên quan
ND
Xem chi tiết
DQ
19 tháng 9 2020 lúc 4:46

Đặt \(a=\sqrt[4]{5}\Leftrightarrow5=a^4\)

Ta cần chứng minh: \(\left(\frac{a+1}{a-1}\right)^4=\frac{3+2a}{3-2a}\)

Khai triển: \(VT=\left(\frac{a+1}{a-1}\right)^4=\frac{\left(a+1\right)^4}{\left(a-1\right)^4}\)

                                         \(=\frac{2\left(3+2a\right).\left(1+a^2\right)}{2\left(3-2a\right).\left(1+a^2\right)}\)

                                         \(\frac{3+2a}{3-2a}=VP\)(đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
HT
Xem chi tiết
TH
Xem chi tiết
CN
Xem chi tiết
H24
13 tháng 10 2019 lúc 15:33

\(\frac{5\sqrt{7}-7\sqrt{5}+2\sqrt{70}}{\sqrt{35}}\)

\(=\frac{\sqrt{35}.(5\sqrt{7}-7\sqrt{5}+2\sqrt{70})}{\sqrt{35}.\sqrt{35}}\)

\(=\frac{\sqrt{35}.(5\sqrt{7}-7\sqrt{5}+2\sqrt{70})}{35}\)

Bình luận (0)
H24
13 tháng 10 2019 lúc 15:38

\(\sqrt{\frac{4}{3}}+\sqrt{12}-\frac{4}{3}\sqrt{\frac{3}{4}}\)

\(=\frac{\sqrt{4}}{\sqrt{3}}+\sqrt{12}-\frac{4}{3}\cdot\frac{\sqrt{3}}{\sqrt{4}}\)

\(=\frac{2\sqrt{3}}{\sqrt{3}.\sqrt{3}}+\sqrt{12}-\frac{4}{3}\cdot\frac{\sqrt{3}}{2}\)

\(=\frac{2\sqrt{3}}{3}+2\sqrt{3}-\frac{2\sqrt{3}}{3}\)

\(=2\sqrt{3}\left(\frac{1}{3}+1-\frac{1}{3}\right)\)

\(=2\sqrt{3}\)

Bình luận (0)
H24
13 tháng 10 2019 lúc 15:55

\(\left(5\sqrt{\frac{1}{5}}+\frac{1}{2}\sqrt{20}-\frac{5}{4}\sqrt{\frac{4}{5}+5}\right):2\sqrt{5}\)

\(=\left(5\cdot\frac{\sqrt{1}}{\sqrt{5}}+\frac{1}{2}\sqrt{4.5}-\frac{5}{4}\sqrt{\frac{4+25}{5}}\right)\cdot\frac{1}{2\sqrt{5}}\)

\(=\left(\frac{5\sqrt{5}}{\sqrt{5}.\sqrt{5}}+\frac{1}{2}.2\sqrt{5}-\frac{5}{4}\sqrt{\frac{29}{5}}\right)\cdot\frac{\sqrt{5}}{2\cdot\sqrt{5}\cdot\sqrt{5}}\)

\(=\left(\frac{5\sqrt{5}}{5}+\sqrt{5}-\frac{5}{4}\cdot\frac{\sqrt{29}}{\sqrt{5}}\right)\cdot\frac{\sqrt{5}}{10}\)

\(=\left(\sqrt{5}+\sqrt{5}-\frac{5}{4}\cdot\frac{\sqrt{29}\sqrt{5}}{\sqrt{5}\sqrt{5}}\right)\cdot\frac{\sqrt{5}}{10}\)

\(=\left(2\sqrt{5}-\frac{5}{4}\cdot\frac{\sqrt{145}}{5}\right)\cdot\frac{\sqrt{5}}{10}\)

\(=\left(2\sqrt{5}-\frac{\sqrt{145}}{4}\right)\cdot\frac{\sqrt{5}}{10}\)

Bình luận (0)
NL
Xem chi tiết
NL
29 tháng 10 2020 lúc 19:35

Trả lời nhanh giúp mình với mình cần gấp lắm

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết
HT
Xem chi tiết
H24
Xem chi tiết
H24
22 tháng 10 2021 lúc 11:01

\(C=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}}\)

\(C=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+2\sqrt{12}}}}}\)

\(C=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{48-10\left(2+\sqrt{3}\right)}}}\)

\(C=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}}\)

\(C=\sqrt{4+\sqrt{5\sqrt{3}+5\sqrt{28-2\sqrt{75}}}}\)

\(C=\sqrt{4+\sqrt{5\sqrt{3}+5\left(5-\sqrt{3}\right)}}\)

\(C=\sqrt{4+5}\)

\(C=3\)

Bình luận (0)
H24
Xem chi tiết
AN
1 tháng 9 2016 lúc 13:46

\(\sqrt[4]{\frac{3-2\sqrt[4]{5}}{3+2\sqrt[4]{5}}}\)\(\sqrt{\frac{\sqrt{5}-2}{3+2\sqrt[4]{5}}}\)

Từ đó thì

\(\frac{\sqrt[4]{5}-1}{\sqrt[4]{5}+1}\)= \(\sqrt{\frac{\sqrt{5}-2}{3+2\sqrt[4]{5}}}\)

<=> \(\frac{1+\sqrt{5}-2\sqrt[4]{5}}{1+\sqrt{5}+2\sqrt[4]{5}}=\frac{\sqrt{5}-2}{3-2\sqrt[4]{5}}\)

<=> \(3-\sqrt{5}-4\sqrt[4]{5}+2\sqrt{5}\sqrt[4]{5}\) =  \(3-\sqrt{5}-4\sqrt[4]{5}+2\sqrt{5}\sqrt[4]{5}\)

Vậy cái đầu tiên là đúng

Bình luận (0)