Những câu hỏi liên quan
BH
Xem chi tiết
H24
2 tháng 7 2021 lúc 10:12

\(\left(x+y\right)^2+4x+1\)

đây là đề bài ak?

Bình luận (0)
MH
Xem chi tiết
AH
13 tháng 8 2021 lúc 0:20

$x=5; y=-3$ thì $(x+y)^2+4x+1$ là scp mà $x\neq y$.

Bạn xem lại đề.

Bình luận (0)
PB
Xem chi tiết
CT
7 tháng 10 2018 lúc 10:16

x y + ( 1 + x 2 ) ( 1 + y 2 ) = 1 ⇔ ( 1 + x ) 2 ( 1 + y ) 2 = 1 − x y ⇒ ( 1 + x 2 ) ( 1 + y 2 ) = 1 - x y 2 ⇔ 1 + x 2 + y 2 + x 2 y 2 = 1 − 2 x y + x 2 y 2 ⇔ x 2 + y 2 + 2 x y = 0 ⇔ x + y 2 = 0 ⇔ y = − x ⇒ x 1 + y 2 + y 1 + x 2 = x 1 + x 2 − x 1 + x 2 = 0

Bình luận (0)
TK
Xem chi tiết
KT
8 tháng 8 2018 lúc 20:15

lam thế  nao vậy?

Bình luận (0)
GG

ko hỉu

Bình luận (0)
TL
30 tháng 4 2020 lúc 7:59

Giả thiết đã cho có thể viết lại được thành 3x2-2y2=1(1)

Từ đây, ta có x lẻ nên x2chia 8 dư 1 => 3x2 chia 8 dư 3

Từ đo ta có 2y2 chia 8 dư 2

=> y2 chia 8 dư 1. Do đó: x2-y2 chia 8 (2)

Tiếp theo ta sẽ chứng minh x2-y2chia hết cho 5 (3)

Chú ý rằng số dư của a2 (a thuộc Z) khi chia cho 5 là 0;1 và 4

Nếu y2 chia 5 thì từ (1) ta có 3x2 chia 5 dư 1, mâu thuẫn do só dư của 3x2 khi chia 5 chỉ có thể là 0;3;2Nếu y2 chia 5 dư 4 thì từ (1) ta có 3x2 chia 5 dư 4, mâu thuẫnDo đó ta phải có y2 chia 5 dư 1. Khi đó từ (1) ta cũng suy ra x2 chia 5 dư 1. Dẫn đến x2-y2 chia hết cho 5

Từ (2) và (3) với chú ý (5;8)=1 ta thu được x2-y2 chia hết cho 40 (đpcm)

Bình luận (1)
 Khách vãng lai đã xóa
H24
Xem chi tiết
ND
Xem chi tiết
H24
11 tháng 12 2022 lúc 16:45

Ta có: x2+y2+2xy-4x-2y+1=0

      ⇔(x2+y2+2xy-2x-2y+1)-2x=0

      ⇔(x+y-1)2=2x

Mà (x+y-1)2 là số chính phương

⇒2x là số chính phương

⇒2x chia 4 dư 0 hoặc 1

Mà 2x là số chẵn 

⇒2x chia hết cho 4

⇒x chia hết cho 2

⇒x là số chẵn(đpcm)

Lại có:(x+y-1)2=2x

\(\dfrac{\left(x+y-1\right)^2}{2}\)=x

\(\dfrac{\left(x+y-1\right)^2}{2}\): 2=x:2

\(\dfrac{\left(x+y-1\right)^2}{2}\)\(\dfrac{1}{2}\) =x:2

\(\dfrac{\left(x+y-1\right)^2}{4}\)=x:2

⇒(\(\dfrac{x+y-1}{2}\))2=x:2  

Mà \(\left(\dfrac{x+y-1}{2}\right)^2\) là số chính phương

⇒x:2 là số chính phương (đpcm)

Bình luận (0)
H24
Xem chi tiết
TH
22 tháng 9 2021 lúc 16:15

m đâu ????

Bình luận (0)
NM
22 tháng 9 2021 lúc 16:19

\(1,\\ A=\left(4x^2+y^2\right)\left(4x^2-y^2\right)=16x^4-y^4\)

Đề sai, biểu thức A ko có m thì sao chứng minh?

\(2,\) Gọi 2 số nguyên lt là \(a;a+1\left(a\in Z\right)\)

Ta có \(a+1-a=1\) là số lẻ (đpcm)

\(3,P=9x^2+24x+16-10x-x^2+16=8x^2+14x+32\)

\(4,Q=x^2-4x+5=\left(x^2-4x+4\right)+1=\left(x-2\right)^2+1\ge1\)

Dấu \("="\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Bình luận (2)
LL
22 tháng 9 2021 lúc 16:23

1) m ??

2) Gọi 2 số nguyên liên tiếp là \(a,a+1\left(a\in Z\right)\)

 \(\left(a+1\right)-a=a+1-a=1\) là một số lẻ

3) \(P=\left(3x+4\right)^2-10x-\left(x-4\right)\left(x+4\right)=9x^2+24x+16-10x-x^2+16=8x^2+14x+32\)

4) \(Q=x^2-4x+5=\left(x^2-4x+4\right)+1=\left(x-2\right)^2+1\ge1\)

\(minQ=1\Leftrightarrow x=2\)

 

Bình luận (0)
HH
Xem chi tiết
AH
15 tháng 1 2023 lúc 20:05

Lời giải:
$P=(x+1)^3-(x+1)^3-[(x-1)^2+(x+1)^2]$

$=-[(x-1)^2+(x+1)^2]=-[(x^2-2x+1)+(x^2+2x+1)]=-2(x^2+1)$ phụ thuộc vào giá trị của biến nhé. Bạn xem lại đề.

$Q=(2x)^3-y^3+(2x)^3+y^3-16x^3$

$=8x^3-y^3+8x^3+y^3-16x^3=(8x^3+8x^3-16x^3)+(-y^3+y^3)=0+0=0$ không phụ thuộc vào giá trị của biến (đpcm)

Bình luận (1)
AH
17 tháng 1 2023 lúc 17:58

$P=(x+1)^3-(x-1)^3-3[(x-1)^2+(x+1)^2]$

$=(x^3+3x^2+3x+1)-(x^3-3x^2+3x-1)-3[(x^2-2x+1)+(x^2+2x+1)]$

$=6x^2+2-3(2x^2+1)=3(2x^2+1)-3(2x^2+1)=0$ là giá trị không phụ thuộc vào giá trị của biến.

Bình luận (0)
DT
Xem chi tiết