tính hợp lí\(S=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+......+\frac{1}{2187}\)
\(S=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+.....+\frac{1}{2187}\)
\(S=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+....+\frac{1}{2187}\)
Tính nhanh \(\frac{1}{1}+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}+\frac{1}{2187}\)
Gọi tong trên là A
\(A=\frac{1}{3}+\frac{1}{9}+\frac{1}{81}+\frac{1}{243}+\frac{1}{7129}+\frac{1}{2187}\)
\(3A=\frac{1}{3}+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{729}\)
\(3A-A=\left(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\right)-\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}+\frac{1}{2187}\right)\)
\(2A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}-\frac{1}{3}-\frac{1}{9}-\frac{1}{27}-\frac{1}{81}-\frac{1}{243}-\frac{1}{729}-\frac{1}{2187}\)
\(2A=1-\frac{1}{2187}\)
\(2A=\frac{2186}{2187}\)
\(A=\frac{2186}{2187}:2\)
\(A=\frac{1093}{2187}\)
Vậy tổng A = \(\frac{1093}{2187}\)
\(3y=3\cdot\frac{1}{1}+3\cdot\frac{1}{3}+3\cdot\frac{1}{9}+...+3\cdot\frac{1}{729}+3\cdot\frac{1}{2187}\)
\(=3+\frac{1}{1}+\frac{1}{3}...+\frac{1}{729}\)
=> \(3y-y=3+\frac{1}{1}+\frac{1}{3}+..+\frac{1}{729}-\frac{1}{1}-\frac{1}{3}-...-\frac{1}{2187}\)
<=> 2y = 3- 1/2187
=> y = \(\frac{3-\frac{1}{2187}}{2}\)
\(\text{Đ}\text{ặt} A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}+\frac{1}{2187}\)
\(\Rightarrow2187A=2187+729+243+81+27+9+3+1\)
\(\Leftrightarrow2187A=3280\)
\(\Leftrightarrow A=\frac{3280}{2187}\)
Chắc chắn 100% luôn
A) P=18x31+78x24+78x17+22x72
B) S=\(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...........\frac{1}{2187}\)
\(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+..........\frac{1}{2187}\)
A=1/3+1/9+1/27+...+1/2187
=1/3+1/3^2+1/3^3+...+1/3^7
-->3A=1+1/3+1/3^2+...+1/3^6
-->3A-A=(1+1/3+1/3^2+...+1/3^6) - (1/3+1/3^2+1/3^3+...+1/3^7)
-->2A=1- 1/3^7
-->A=1093/2187
ko hiểu có thể giải lại dc ko bạn
pn ơi cho mk hỏi các pn học mũ (x2) chua
\(1+\frac{1}{3}=\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}\)
#)Giải :
\(A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}\)
\(A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}+\frac{1}{2187}\)
\(A=\frac{2187}{2187}+\frac{729}{2187}+\frac{243}{2187}+\frac{81}{2187}+\frac{27}{2187}+\frac{9}{2187}+\frac{3}{2187}+\frac{1}{2187}\)
\(A=\frac{3037}{2187}\)
#~Will~be~Pens~#
Bài 1 : Tính nhanh các tổng sau :
a) S = \(\frac{2}{1x3}+\frac{2}{3x5}+\frac{2}{5x7}+........+\frac{2}{2017x2019}\)
b A = \(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+..........+\frac{1}{729}+\frac{1}{2187}\)
GẤP NA CÁC TÌNH YÊU !!! MOA MOA MOA !!!!!!! GẤP LẮM LUN Ớ !!!!
Câu a
\(S=\frac{3-1}{1x3}+\frac{5-3}{3x5}+\frac{7-5}{5x7}+...+\frac{2019-2017}{2017x2019}.\)
\(S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2017}-\frac{1}{2019}=1-\frac{1}{2019}=\frac{2018}{2019}\)
Câu b
\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^6}+\frac{1}{3^7}\)
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^5}+\frac{1}{3^6}\)
\(2A=3A-A=1-\frac{1}{3^7}\Rightarrow A=\frac{1}{2}-\frac{1}{2.3^7}\)
\(y=\frac{\frac{1}{3}+\frac{1}{9}-\frac{1}{27}}{\frac{5}{3}+\frac{5}{9}-\frac{5}{27}}\)
Tính biểu thức trên một cách hợp lí.
\(Y=\frac{\frac{1}{3}+\frac{1}{9}-\frac{1}{27}}{\frac{5}{3}+\frac{5}{9}-\frac{5}{27}}\)
\(\Rightarrow Y=\frac{\frac{1}{3}+\frac{1}{9}-\frac{1}{27}}{5\cdot\left(\frac{1}{3}+\frac{1}{9}-\frac{1}{27}\right)}\)
\(\Rightarrow Y=\frac{1}{5}\)
K CHO MH NHA
Tính nhanh: \(B=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}\)
\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}\)
\(\Rightarrow\frac{1}{3}B=\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^8}\)
\(\Rightarrow B-\frac{1}{3}B=\frac{1}{3}-\frac{1}{3^8}\Rightarrow\frac{2}{3}B=\frac{3^7-1}{3^8}\Rightarrow B=\frac{3\left(3^7-1\right)}{2.3^8}\)
Ta có :
\(B=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{2187}\)
\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}\)
\(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^6}\)
\(3B-B=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^6}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}\right)\)
\(2B=1-\frac{1}{3^7}\)
\(2B=\frac{3^7-1}{3^7}\)
\(B=\frac{3^7-1}{3^7}:2\)
\(B=\frac{3^7-1}{2.3^7}\)
Vậy \(B=\frac{3^7-1}{2.3^7}\)
Chúc bạn học tốt ~