x-2/1.2 - 2/2.3 - 2/3.4 -...-2/99.100 <1
Giúp mình nhé xong trước 7 mình sẽ tick
2/1.2 + 2/2.3 +2/3.4+..........+2/99.100
= 2/1 - 2/2 + 2/2 - 2/3 + 2/3 - 2/4 + ..... + 2/99 - 2/100
= 2/1 + 2/100
= 101/50
2/1 - 2/2 + 2/2 - 2/3 + 2/3 - 2/4 +...+ 2/99 - 2/100
= 2/1 - 2/100
= 99/50
\(\dfrac{x}{200}\)= \(\dfrac{1^2}{1.2}\) . \(\dfrac{2^2}{2.3}\) . \(\dfrac{3^2}{3.4}\) . .... .\(\dfrac{99^2}{99.100}\)
bạn hãy rút gọn vế phải: x/200=1/2.2/3.3/4......98/99.99/100
Rồi sẽ có cái phương trình:x/200=1/100
từ đó suy ra:x/200=2/200 =>x=2
:)))))
\(\dfrac{x}{200}=\dfrac{1^2}{1.2}.\dfrac{2^2}{2.3}.\dfrac{3^2}{3.4}...\dfrac{99^2}{99.100}\)
\(\Leftrightarrow\dfrac{x}{200}=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{99}{100}\)
\(\Leftrightarrow\dfrac{x}{200}=\dfrac{1}{100}\)
\(\Leftrightarrow x=2\)
tính tổng : A=1.5 + 5.9 + ....+97.101+101.105
B=1.2^2+2.3^2+3.4^2+....+99.100^2
C=1.2+3.4+5.6+7.8+...+99.100
D=1.2.3+2.3.4+...+98.99.100
Mình làm mẫu 1 bài nha !
Có : 12A = 1.5.12+5.9.12+....+101.105.12
= 1.5.12+5.9.(13-1)+.....+101.105.(109-97)
= 1.5.12+5.9.13-1.5.9+.....+101.105.109-97.101.105
= 1.5.12-1.5.9+101.105.109
= 1155960
=> A = 1155960 : 12 = 96330
Tk mk nha
Có : 4D = 1.2.3.4+2.3.4.4+....+98.99.100.4
= 1.2.3.4+2.3.4.(5-1)+.....+98.99.100.(101-97)
= 1.2.3.4+2.3.4.5-1.2.3.4+......+98.99.100.101-97.98.99.100
= 98.99.100.101
=> D = 98.99.100.101/4 = 24497550
1^2/1.2 x 2^2/2.3 x 3^2 /3.4 x.......x 99^2/99.100
nhanh tk
a) A = (1.1)/(1.2) x (2.2)/(2.3) x ... (99.99)/(99.100) = 1/2 . 2/3 . 3/4. ..99/100 = 1/100
Tk cho em nha
1, tìm x thuộc N biết
32+42=5x-1
2, tính tổng
S=1.2+2.3+3.4+...+99.100
S=1.2+2.3+3.4+...+99.100
giúp mình nha mình đang cần gấp,thanks mn
1. ta có :
\(3^2+4^2=5^{x-1}\)
\(25=5^{x-1}\)
\(5^2=5^{x-1}\)
=> x = 3
Ta có : S = 1.2 + 2.3 + 3.4 + ..... + 99.100
=> 3S = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ..... + 99.100.101
=> 3S = 99.100.101
=> S = 99.100.101/3
=> S = 333300
S=2/1.2+2/2.3+2/3.4+............+2/98.99+2/99.100
mk k vt lại đề nha
S=2.(1/1.2+1/2.3+1/3.4+............+1/99.100)
S=2.(1-1/2+1/3-1/4+1/4-1/5+.............+1/99-1/100)
S=2.(1-1/100)
S=2.99/100
S=198/100
S=\(\frac{2}{1.2}\)+\(\frac{2}{2.3}\)+\(\frac{2}{3.4}\)+...+\(\frac{2}{98.99}\)+\(\frac{2}{99.100}\)
S=\(\frac{2}{1}\).(\(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)+...+\(\frac{1}{98.99}\)+\(\frac{1}{99.100}\))
S=\(\frac{2}{1}\).(\(\frac{1}{1}\)-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+...+\(\frac{1}{98}\)-\(\frac{1}{99}\)+\(\frac{1}{99}\)-\(\frac{1}{100}\))
S=\(\frac{2}{1}\).(\(\frac{1}{1}\)-\(\frac{1}{100}\))
S=\(\frac{2}{1}\).(\(\frac{100}{100}\)-\(\frac{1}{100}\))
S=\(\frac{2}{1}\).\(\frac{99}{100}\)
S=\(\frac{99}{50}\)
Vậy S=\(\frac{99}{50}\)
P = \(\dfrac{2}{1.2}+\dfrac{2}{2.3}+\dfrac{2}{3.4}+...+\dfrac{2}{99.100}\)
\(P=\dfrac{2}{1\cdot2}+\dfrac{2}{2\cdot3}+\dfrac{2}{3\cdot4}+...+\dfrac{2}{99\cdot100}\\ =2\cdot\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\right)\\ =2\cdot\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\\ =2\cdot\left(\dfrac{1}{1}-\dfrac{1}{100}\right)\\ =2\cdot\dfrac{99}{100}\\ =\dfrac{99}{50}\)
\(P=\dfrac{2}{1\cdot2}+\dfrac{2}{2\cdot3}+\dfrac{2}{3\cdot4}+...+\dfrac{2}{99\cdot100}\\ =2\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\right)\\ =2\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\\ =2\left(1-\dfrac{1}{100}\right)=2\cdot\dfrac{99}{100}=\dfrac{99}{50}\)
\(P=\dfrac{2}{1.2}+\dfrac{2}{2.3}+\dfrac{2}{3.4}+...+\dfrac{2}{99.100}\)
\(=2\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\right)\)
\(=2\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(=2\left(1-\dfrac{1}{100}\right)\)
\(=2\cdot\dfrac{99}{100}\)
\(=\dfrac{99}{50}\)
#DatNe
Tìm x, sao cho giá trị của phân số là 1:
1.2+2.3+3.4+...+99.100/x^2+(x^2+1)+(x^2+2)+...+(x^2+99)
tìm x biết
x/200 = 1 mũ 2/1.2 x 2 mũ 2/2.3 x 3 mũ 2/3.4.........99 mũ 2/ 99.100
Tính tổng S= 2/1.2 + 2/2.3 + 2/3.4 +............+ 2/98.99 + 2/99.100
\(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{98.99}+\frac{2}{99.100}\)
= \(2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
= \(2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
= \(2\left(1-\frac{1}{100}\right)\)
=\(2.\frac{99}{100}\)
=\(\frac{99}{50}\)