Những câu hỏi liên quan
GH
Xem chi tiết
BH
27 tháng 9 2017 lúc 11:46

*/ Tổng của 3 số tự nhiên liên tiếp có dạng: a+(a+1)+(a+2)=3a+3=3(a+1) => Luôn chia hết cho 3

*/ 215+424=2.214+2.212=2(214+212)  => Luôn chia hết cho 2

*/  \(S1=\frac{2012\left(2012-1\right)}{2}-1-2=2023063\)

*/ \(S2=\frac{2012\left(2012-1\right)}{2}-1=2023065\)

Bình luận (0)
LN
Xem chi tiết
LD
23 tháng 9 2016 lúc 12:55

Ta có: C = 2 + 22 + 23 + ..... + 22011 + 22012

=> C = (2 + 22) + (23 + 24) + ..... + ( 22011 + 22012 )

=> C = 2.(1 + 2) + 23.(1 + 2) + ........ + 22011.(1 + 2)

=> C = 2.3 + 23.3 + ..... + 211.3

=> C = 3.(2 + 23 + ..... + 211) chia hết cho 3 (đpcm)

Bình luận (0)
TT
15 tháng 11 2017 lúc 11:02

Nguyễn Quang Trung làm đúng rồi. thông minh thật

Bình luận (0)
KX
Xem chi tiết
LH
25 tháng 5 2015 lúc 11:01

Ta có:

A= 2+22+23+...+22010+22011+22012

A=(2+2^2)+(2^3+2^4)+...+(2^2009+2^2010)+(2^2011+2^2012)

A=(2+2^2)+2^2(2+2^2)+...+2^2008(2+2^2)+2^2010(2+2^2)

A=6+2^2x6 + .....+2^2008x6 + 2^2010x6

A=6x(1+2^2+...+2^2008+2^2010) chia hết cho 6 

Vậy A chia hết cho 6

Bình luận (0)
LH
25 tháng 5 2015 lúc 11:01

Bạn vào mục câu hỏi tương tự ấy!

Bình luận (0)
TT
25 tháng 5 2015 lúc 11:03

 S =(2 + 22) + ( 23 + 24 ) +……..+ ( 22011 + 22012 )
                               = (2 + 22) +26(2 + 22) + ……….22010(2 + 22)
                               =      6       +      22.6   + ………22010.6
                               = 6 ( 1 + 22 + ……+ 22010 )
vậy  chia hết cho 6

Bình luận (0)
NT
Xem chi tiết
ND
22 tháng 11 2014 lúc 10:52

Ta có:

A= 2+22+23+...+22010+22011+22012

A=(2+2^2)+(2^3+2^4)+...+(2^2009+2^2010)+(2^2011+2^2012)

A=(2+2^2)+2^2(2+2^2)+...+2^2008(2+2^2)+2^2010(2+2^2)

A=6+2^2x6 + .....+2^2008x6 + 2^2010x6

A=6x(1+2^2+...+2^2008+2^2010) chia hết cho 6 

Vậy A chia hết cho 6

Bình luận (0)
PH
Xem chi tiết
ND
25 tháng 10 2020 lúc 17:32

1) \(1+4+4^2+4^3+...+4^{2012}\)

\(=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{2010}+4^{2011}+4^{2012}\right)\)

\(=21+21\cdot4^3+...+21\cdot4^{2010}\)

\(=21\cdot\left(1+4^3+...+4^{2010}\right)\) chia hết cho 21

2) \(1+7+7^2+7^3+...+7^{101}\)

\(=\left(1+7\right)+\left(7^2+7^3\right)+...+\left(7^{100}+7^{101}\right)\)

\(=8+8\cdot7^2+...8\cdot7^{100}\)

\(=8\cdot\left(1+7^2+...+7^{100}\right)\) chia hết cho 8

3) CM chia hết cho 5:

\(2+2^2+2^3+2^4+...+2^{100}\)

\(=\left(2+2^3\right)+\left(2^2+2^4\right)+...+\left(2^{98}+2^{100}\right)\)

\(=5\cdot2+5\cdot2^2+...+5\cdot2^{98}\)

\(=5\cdot\left(2+2^2+...+2^{98}\right)\) chia hết cho 5

CM chia hết cho 31:

\(2+2^2+2^3+...+2^{100}\)

\(=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(=2\cdot31+...+2^{96}\cdot31\)

\(=31\cdot\left(2+...+2^{96}\right)\) chia hết cho 31

Bình luận (0)
 Khách vãng lai đã xóa
LT
19 tháng 11 2023 lúc 19:43

Rrffhvyccbvfccvbbbhhgg

Bình luận (0)
KB
Xem chi tiết
BK
Xem chi tiết
NH
3 tháng 5 2019 lúc 20:27

A = 1 + 3 + 32 + 33 +...+ 32011 + 32012

A = ( 1 + 3 + 32 ) + ( 33 + 34 + 35 ) +...+ ( 32010 + 32011 + 32012 )

A = ( 1 + 3 + 32 ) + 33 . ( 1 + 3 + 32 ) +...+ 32010 . ( 1 + 3 + 32 )

A = 13 + 33 . 13 +...+ 32010 . 13

A = 13 + ( 33 +...+ 32010 ) . 13

Vì 13 \(⋮\)13 nên 13 + ( 33 +...+ 32010 ) . 13 \(⋮\)13

hay A \(⋮\)13

~ Hok tốt ~

Bình luận (0)
QM
Xem chi tiết
TH
10 tháng 12 2015 lúc 15:14

http://olm.vn/hoi-dap/question/93424.html

Bạn vào đây tham khảo nhé !!!

Bình luận (0)
H24
10 tháng 12 2015 lúc 15:20

A= 2+2^2+2^3+...+2^2010+2^2011+2^2012

A= (2^1+2^2).1+(2^1+2^2).2^2+...+(2^1+2^2).2^2010

A= 6.1+6.2^2+...+6.2^2010

A= 6.(1+2^2+...+2^2010) chia hết cho 6

Vậy A chia hết cho 6                        3 TICK NHA!

Bình luận (0)
H24
10 tháng 12 2015 lúc 15:14

do A chia hết cho 6-> A chia hết cho 6

Bình luận (0)
SH
Xem chi tiết