Chứng minh rằng:Với 6 STN bất kì luôn chọn được 2 số có hiệu chia hết cho 5
Cho 5 STN lẻ bất kì, chứng minh rằng ta luôn chọn được 4 số mà tổng của chúng chia hết cho 4
CÓ LỜI GIẢI CÀNG TỐT NHA MẤY BẠN!!!!!
cho 4 STN bất kì chứng tỏ rằng trong đó có ít nhất 2 số có hiệu chia hết cho 3
Cho 3 số tự nhiên bất kì. Chứng minh rằng hiệu của 2 số bất kì luôn chia hết cho 2
Có 3 số => luôn chọn ra được 2 số cùng tính chẵn lẻ
=> hiệu của chúng chia hết cho 2
=> đpcm
Chứng minh rằng trong 11 STN bất kì bao giờ cũng có ít nhất 2 số có cs tận cùng giống nhau thì hiệu của chúng chia hết cho 10
Chứng tỏ rằng tồn tai 1 bội của 1989 dc viết bởi toàn cs 1 và cs 0
Gợi ý : Dùng phương pháp Đi-rích-lê
Làm nhanh đúng mk tick Mk cần gấp
Cho 100 số tự nhiên bất kì . Chứng minh rằng tổng của 2 số bất kì bao giờ cũng chia hết cho 100
Bài này cũng sử dụng dirichle
Giả sử có 51 số \(⋮̸\)100
Xét 50 cặp số dư (99;1);(98;2)............(50;50)
Có 52 số mà chia cho 50 thì có 1 cặp số dư \(⋮\)100 rơi vào trong 50 cặp số dư đó(dpcm)
nha có 51 số nhé mà chia cho 50 thì có 1 cặp số dư \(⋮\)100
Rơi vào 50 cặp số dư đó (dpcm)
Tớ vt lộn ở trên xíu thông cảm
Hok tốt
Bài 1: cho 12 số có 2 chữ số khác nhau. chứng minh rằng tồn tại 2 số có hiệu là số có 2 chữ số giống nhau
Bài 2: chứng minh rằng trong 27 số tự nhiên tùy ý luôn tồn tại 2 số có tổng hoặc hiệu chia hết cho 50.
AI LÀM CÓ CÁCH GIẢI MÌNH SẼ TICK.HỨA LUÔN
Cho 10 số tự nhiên bất kì :\(a_1,a_2,...,a_{10}\). Chứng minh rằng thế nào cũng có một số hoặc tổng một số các số liên tiếp nhau trong dãy trên chia hết cho 10
Gọi số tự nhiên đầu là a
Ta có 10 số đó sẽ là:
a;A+1;A+2;A+3;a+4;...;a+10
vì khi chia a cho 10 thì sẽ dư từ 0 đến 9, Nên
Nếu cộng a cho một đại lượng từ 0 đến 9 sẽ chia hết cho 10
bài 1: chứng minh rằng biêu thức \(A=\left(7+4\sqrt{3}\right)^n+\left(7-4\sqrt{3}\right)^n\)nhận giá trị nguyên và không chia hết cho 13 với mọi giá trị nguyên của n.(sử dụng đồng dư thức)
Bài 2: Tìm số dư trong phép chia sau: (1995+1)(1995+2)...(1995+3990) chia cho 31995 (sử dụng quy nạp)
Bài 3: trong kì thi Olympic có 17 học sinh được mang số báo danh trong khoảng từ 1 đến 1000. Chứng tỏ rằng có thể chọn ra 9 học sinh có tổng các số ký dang được mang chia hết cho 9 (sử dụng nguyên lý direchlet)
Cho tổng 1+2+3+4+5+...+49+50.Liệu có thể liên tục thay 2 số bất kì = hiệu của chúng cho tới khi được kết quả là 0 hay không?
Ta đặt A = 1 + 2 + 3 + 4 + 5 + ... + 49 + 50. Dãy số tự nhiên liên tiếp từ 1 đến 50 có 50 số, trong đó số các số lẻ bằng số các số chẵn nên có 50 : 2 = 25 (số lẻ). Vậy A là một số lẻ. Gọi a và b là hai số bất kì của A, khi thay tổng a + b bằng hiệu a - b thì A giảm đi : (a + b) - (a - b) = 2 x b tức là giảm đi một số chẵn. Hiệu của một số lẻ và một số chẵn luôn là một số lẻ nên sau mỗi lần thay, tổng mới vẫn là một số lẻ. Vì vậy không bao giờ nhận được kết quả là 0.