Chứng tỏ: 1+ 3^2 + 3^4 + 3^6 +... + 3^2002 chia hết cho 7
Cho S = 30 + 32 + 34 + 36 + ... + 32002
a) tính S
b ) chứng tỏ rằng S chia hết cho 7
a) Nhân S với 32 bằng S nhân với 9 ta được : 9S
9S = 32 + 34 + 36 + ... + 32002 + 32004
\(\Rightarrow\)9S - S = ( 32 + 34 + 36 + ... + 32004 ) - ( 30 + 32 + 36 + ... + 32002 )
\(\Rightarrow\)8S = 32004 - 1
\(\Rightarrow\)S = \(\frac{\left(3^{2004}-1\right)}{8}\)
b) Ta có s là số nguyên nê phài chứng minh 32004 - 1 chia hết cho 7
Ta có : 32004 - 1 = ( 36 )334 - 1 = ( 36 ) . M = 728 . M = 7 . 104 . M
\(\Rightarrow\)32004 chia hết cho 7. Mặt khác ( 7;8 ) = 1
\(\Rightarrow\)S chia hết cho 7
Chứng tỏ rằng :S chia hết 7 với S= 30+32+34+36+...+32002.
9S=3^2+3^4+...+3^2002+3^2004
=> 9S-S= (3^2+3^4+...+3^2002+3^2004)-(3^0+3^2+...+3^2002)
8S = 3^2004 - 3 = 3(3^2003-1)
=> S= 3/8.(3^2003-1)
Ta có: S= (3^0+3^2+3^4) + (3^6+3^8+3^10)+....+(3^1998+3^2000+3^2002)
S = 3^0(1+3^2+3^4) +3^6(1+3^2+3^4)+....+3^1998(1+3^2+3^4)
S = 3^0.91+3^6.91+...+3^1998.91
S = 3^0.13.7 + 3^6.13.7 +...+ 3^1998.13.7
Vì mỗi số hạng đều chia hết cho 7 nên S chia hết cho 7
Chứng tỏ rằng 1+2+2^2+2^3+...+2^2002+2^2003 chia hết cho 7
Giải giúp mình
Bài 1: chứng tỏ B= 2+2*(mũ)2+2*3+...+2*60 chia hết cho 3 và 7
Bài 2: cho A=2+2*2+2*3+2*4+2*5+2*6+2*7+2*8
Chứng tỏ A chia hết cho 5
Bài 3: chứng tỏ abba+ab+ba chia hết cho 11
Bài 4: chứng minh A=4+4*2+4*3+4*4+4*5+4*6 chia hết cho 5
Bài 5: tìm các số tự nhiên a sao cho 2a+1 chia hết cho a-1
cho : S = 30 + 32 + 34 + 36 + ...........+ 32002
a ) thu gọn S
b ) chứng tỏ S chia hết cho 7
a) \(S=1+3^2+3^4+3^6+...+3^{2002}\)
\(3^2.S=3^2+3^4+3^6+3^8+...+3^{2004}\)
\(9S-S=\left(3^2+3^4+3^6+3^8+...+3^{2004}\right)-\left(1+3^2+3^4+3^6+...+3^{2002}\right)\)
\(8S=3^{2004}-1\)
\(S=\frac{3^{2004}-1}{8}\)
b) \(S=1+3^2+3^4+3^6+...+3^{2002}\)
\(=\left(1+3^2+3^4\right)+3^6\left(1+3^2+3^4\right)+...+2^{1998}\left(1+3^2+3^4\right)\)
\(=\left(1+3^2+3^4\right)\left(1+3^6+...+3^{1998}\right)\)
\(=91\left(1+3^6+...+3^{1998}\right)\)
\(=7.13\left(1+3^6+...+3^{1998}\right)\)
Vậy S chia hết cho 7
Cho S=3^0+3^2+3^4+3^6+...+3^2002
Chứng minh S chia hết cho 7
Cho S = 1+2+2^2+2^3+2^4+2^5+2^6+2^7
Chứng tỏ rằng S chia hết cho 4
Cho S = 1+2+2^2+2^3+2^4+2^5+2^6+2^7
Chứng tỏ rằng S chia hết cho 4 VÀ 13
tính tổng:S= 3 mũ 0+ 3 mũ 2+ ..................+ 3 mũ 2002
chứng tỏ S chia hết cho 7
Sao Cũng Được
Trả lời
13
Đánh dấu
13/06/2015 lúc 12:46
Cho : S = 30 + 32 + 34 + 36 + ... + 32002
a) Tính S
b) Chứng minh S chia hết cho 7
Được cập nhật 09/10/2017 lúc 18:34
Toán lớp 6
thien ty tfboys 13/06/2015 lúc 13:06
Báo cáo sai phạm
a)nhân S với 32 ta dc:
9S=3^2+3^4+...+3^2002+3^2004
=>9S-S=(3^2+3^4+...+3^2004)-(3^0+3^4+...+2^2002)
=>8S=32004-1
=>S=32004-1/8
b) ta có S là số nguyên nên phải chứng minh 32004-1 chia hết cho 7
ta có:32004-1=(36)334-1=(36-1).M=7.104.M
=>32004 chia hết cho 7. Mặt khác ƯCLN(7;8)=1 nên S chia hết cho 7
Đúng 23 Sai 0
bui duc anh 04/04/2016 lúc 21:44
Báo cáo sai phạm
S= 3^0 +3^2 +3^4 +....+ 3^2002
9S= 3^4 +3^6+.......+3^2004
9S-S=3^2004-1
8S=3^2004-1
S=3^2004-1/8
Đúng 8 Sai 0
thien ty tfboys 13/06/2015 lúc 13:05
Báo cáo sai phạm
S=(30+32+34)+...+(31998+32000+32002)
S= 91+...+31998(1+32+34)
S=91+...+31998.91
S=91(1+36+...+31998)
S=13.7.(1+36+...+31998) chia hết cho 7
Đúng 6 Sai 0
oOo Lê Việt Anh oOo 18/02/2017 lúc 21:26
Báo cáo sai phạm
a)
30+32+....+32002
=(30+32+34)+.....+(3199832000+32002)
=3×(1+3+32)+.......+31998×(1+3+32)
=3×91+....+31998×91
=91×(3+...+31998)
Vì 91 chia hết cho 7
=>91×(3+...+31998) chia hết cho 7
Vậy S chia hết cho 7