Những câu hỏi liên quan
H24
Xem chi tiết
TL
Xem chi tiết
NT
14 tháng 2 2016 lúc 21:18

a^2+b^2+c^2+2ab+2cb+2ac-a^2-b^2-c^2-2abc>2

2ab+2ca+bc-2abc>2

 

Bình luận (0)
TL
15 tháng 2 2016 lúc 19:53

sao lại từ phần cần chứng minh nhân ra vậy.

Mà bạn làm mình ko hiểu

Bình luận (0)
TL
Xem chi tiết
BB
Xem chi tiết
TH
26 tháng 1 2021 lúc 18:18

Từ gt suy ra a < b + c nên 2a < a + b + c = 2

\(\Rightarrow a< 1\).

Chứng minh tương tự: \(b< 1;c< 1\).

Do đó \(\left(a-1\right)\left(b-1\right)\left(c-1\right)< 0\Leftrightarrow abc< ab+bc+ca-1\) (Do a + b + c = 2)

\(\Rightarrow a^2+b^2+c^2+2abc< a^2+b^2+c^2+2\left(ab+bc+ca-1\right)=\left(a+b+c\right)^2-2=2\) (đpcm).

Bình luận (0)
DA
Xem chi tiết
DT
2 tháng 11 2016 lúc 17:15

Do a,b,c là 3 cạnh của 1 tam giác nên dễ dàng suy ra được a,b,c < 1
Từ đó ta có (1-a)(1-b)(1-c)>0
Suy ra:


Suy ra ĐCCM?

Bình luận (0)
PH
Xem chi tiết
AN
27 tháng 7 2017 lúc 16:39

Ta có:

\(a< b+c\)

\(\Leftrightarrow2a< a+b+c=2\)

\(\Leftrightarrow a< 1\)

Tương tự ta cũng có:

\(\hept{\begin{cases}b< 1\\c< 1\end{cases}}\)

\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)>0\)

\(\Leftrightarrow-abc+ab+bc+ca-a-b-c+1>0\)

\(\Leftrightarrow abc< \left(ab+bc+ca\right)-1\)

\(\Leftrightarrow2abc< 2\left(ab+bc+ca\right)-2\)

\(\Leftrightarrow a^2+b^2+c^2+2abc< a^2+b^2+c^2+2\left(ab+bc+ca\right)-2\)

\(\Leftrightarrow a^2+b^2+c^2+2abc< \left(a+b+c\right)^2+2=4-2=2\)

Bình luận (0)
H24
Xem chi tiết
LT
Xem chi tiết
LD
Xem chi tiết