Những câu hỏi liên quan
PB
Xem chi tiết
CT
23 tháng 7 2018 lúc 7:08

Vì a chia 5 dư 1 nên đặt a = 5x + 1 (x Î N); b chia 5 dư 4 nên đặt b = 5y + 4(y Î N).

Ta có a.b + 1 = (5x + 1)(5y + 4) + 1 = 25xy + 20x + 5y + 5.

Þ ab + 1 = 5(5xy + 4x + y + 1) ⋮  5 (đpcm).

Bình luận (0)
NM
Xem chi tiết
LP
29 tháng 10 2023 lúc 20:45

a chia 5 dư 1 nên \(a=5m+1\left(m\inℕ\right)\)

b chia 5 dư 4 nên \(b=5n+4\left(n\inℕ\right)\)

Do đó \(ab=\left(5m+1\right)\left(5n+4\right)+1\)

\(ab=25mn+20m+5n+4+1\)

\(ab=25mn+20m+5n+5⋮5\)

Ta có đpcm

Bình luận (0)
DT
Xem chi tiết
NH
5 tháng 7 2015 lúc 9:39

1) a chia 6 dư 2 => a= 6k+2

b chia 6 dư 3 => b= 6k+3

=> ab=\(\left(6k+2\right)\left(6k+3\right)=36k^2+30k+6\)=> chia hết cho 6 

2) a= 5k+2; b=5k+3

=> \(ab=\left(5k+2\right)\left(5k+3\right)=25k^2+25k+6=25k\left(k+1\right)+6\)

=> dễ thấy 25k(k+1) chia hết cho 5. 6 chia 5 dư 1

=> ab chia 5 dư 1

Bình luận (0)
NV
Xem chi tiết
H24
23 tháng 8 2015 lúc 17:50

Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6

Bình luận (0)
RM
Xem chi tiết
DT
18 tháng 7 2018 lúc 20:45

Đặt \(a=5k+1\)

\(b=5k+1+3\)

\(ab+1=\left(5k+1\right)\left(5k+4\right)+1=25k^2+25k+4+1\)

\(\Leftrightarrow25k^2+25k+5=5\left(5k^2+5+1\right)⋮5\)

Bình luận (0)
RM
18 tháng 7 2018 lúc 20:51

Camon cậu nhé 

Bình luận (0)
TN
Xem chi tiết
H24
12 tháng 7 2019 lúc 14:43

a) Vì a chia 3 dư 1 nên a có dạng 3m+1 , vì b chia 3 dư 2 nên b có dạng 3n+2. \(\left(m,n\in N\right)\)

Ta có \(ab=\left(3m+1\right)\left(3n+2\right)=3mn+6m+3n+2\)

                \(=3\left(mn+2m+n\right)+2\)

Vậy ab chia 3 dư 2 .

b) Vì a chia 5 dư 4 nên a có dạng 5k-1 \(\left(k\in N\right)\)

Ta có \(a^2=\left(5k-1\right)^2=25k^2-10k+1=5\left(5k^2-2k\right)+1\)

Vậy \(a^2\) chia 5 dư 1 .

Bình luận (0)
TN
Xem chi tiết
LH
7 tháng 7 2016 lúc 9:53

Đặt \(a=5k+2\)

      \(b=5h+3\)

\(\Rightarrow ab=\left(5k+2\right)\left(5h+3\right)\)

\(=25kh+15k+10h+6\)

\(=25kh+15k+10h+5+1\)

\(=5\left(5kh+3k+2h+1\right)+1\) chia 5 dư 1.

Vậy ab chai 5 dư 1.

Bình luận (0)
DM
Xem chi tiết
H24
19 tháng 10 2016 lúc 3:27

a=5n+1

b=5k+2 

a^2=1 (mod 5)

b^2=4 (mod5)

(a^2+b^2)=0 (mod 5) 

không được dùng thì khai triển ra

a^2+b^2=(5n+1)^2+(5k+2)^2

25n^2+10n+1+25k^2+20k+4=5(5n^2...) chia hết cho 5

Bình luận (0)
TL
Xem chi tiết
SN
5 tháng 6 2015 lúc 15:37

a chia 5 dư 3 =>a=5k+3

a chia 5 dư 4 =>a=5c+4

=>ab=(5k+3)(5c+4)=(5k+3)5c+(5k+3)4=(5k+3)5c+5.4k+12

=5[(5k+3)c+4k]+5.2+2=5[(5k+3)c+4k+1]+2 chia 5 dư 2

=>đpcm

Bình luận (0)