chứng minh rằng không tồn tại x thoả mãn: x4 - x3 + 2x - x + 1 = 0
chứng minh không tồn tại x thoả mãn : / 2x+3/ + / 1-2x / =3
Chứng minh rằng không tồn tại số hữu tỉ x thoả mãn: x2=6
ta có : x2=6 \(\Rightarrow\)\(x=\sqrt{6}\)
mà \(\sqrt{6}\)là số vô tỉ nên không tồn tại số hữu tỉ x thỏa mãn x2=6 (đpcm)
chúc bạn học tốt
#)Giải :
Giả sử có tồn tại số hữu tỉ \(x=\frac{a}{b}\left(a,b\in N;ƯCLN\left(a,b\right)=1;b\ne0\right)\)có bình phương bằng 6
Ta có : \(x^2=\left(\frac{a}{b}\right)^2=6\)
\(\Rightarrow a^2=6b^2\)
\(\Rightarrow a^2⋮6^2\Rightarrow6b^2⋮6^2\Rightarrow b^2⋮6\)
Vì a và b cùng chia hết cho 6 \(\RightarrowƯCLN\left(a,b\right)\ge6\)(không thể xảy ra vì ƯCLN(a,b) = 1)
Vậy không tồn tại số hữu tỉ x thỏa mãn x2 = 6
=> đpcm
\(x^2=6\Leftrightarrow x=\sqrt{6}\)
Giả sử \(\sqrt{6}\)là số hữu tỉ, như vậy \(\sqrt{6}\)có thể viết được dưới dạng :
\(\sqrt{6}=\frac{m}{n}\)với \(m,n\inℤ\),\(\left(m,n\right)=1\)
Suy ra \(m^2=6n^2\)(1), do đó \(m^2⋮3\). Ta lại có 3 là số nguyên tố nên \(m⋮3\)(2)
Đặt m = 3k \(\left(k\inℕ\right)\).Thay vào (1) ta được \(9k^2=6n^2\)nên \(3k^2=2n^2\)
suy ra \(5n^2⋮3\)
Do (5, 3) = 1 nên \(n^2⋮3\), do đó \(n⋮3\left(3\right)\)
Từ (2) và (3) suy ra m và n cùng chia hết cho 3, trái với \(\left(m,n\right)=1\)
Như vậy \(\sqrt{6}\)không là số hữu tỉ, do đó \(\sqrt{6}\)là số vô tỉ.
Vậy x là số vô tỉ hay không tồn tại số hữu tỉ x thỏa mãn đề bài (đpcm)
Chứng minh rằng không tồn tại x thỏa mãn: \(x^4-x^3+2x^2-x+1=0\)
\(x^4-x^3+2x^2-x+1=0\)
\(\Rightarrow\left(x^4-x^3+x^2\right)+\left(x^2-x+1\right)=0\)
\(\Rightarrow x^2\left(x^2-x+1\right)+\left(x^2-x+1\right)=0\)
\(\Rightarrow\left(x^2+1\right)\left(x^2-x+1\right)=0\)
Mà \(\hept{\begin{cases}x^2+1>0\forall x\\x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\end{cases}\Rightarrow\left(x^2+1\right)\left(x^2-x+1\right)>0\forall x}\)
Vậy ko tồn tại x thỏa mãn \(x^4-x^3+2x^2-x+1=0\)
\(x^4-x^3+2x^2-x+1=x^4-x^3+x^2+x^2-x+1\)
\(=x^2.\left(x^2-x+1\right)+\left(x^2-x+1\right)\)
\(=\left(x^2+1\right).\left(x^2-x+1\right)\)
vì (x2+1) \(\ge1\)
và \(x^2\ge x\Rightarrow x^2-x+1\ge1\)
=> \(\left(x^2+1\right).\left(x^2-x+1\right)\ge1\Rightarrowđpcm\)
đoạn này t sai r :(
\(x^2-x+1=x^2-\frac{2x.1}{2}+\frac{1}{2^2}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
=> \(\left(x^2+1\right).\left(x^2-x+1\right)\ge\frac{3}{4}\)=> đpcm
chứng minh rằng không tồn tại cặp số nguyên x,y thoả mãn x^2-2018=y^2
Giả sử tồn tại cặp số nguyên (x; y) sao cho \(x^2-2018=y^2\)
\(\Rightarrow x^2-y^2=2018\)
\(\Leftrightarrow\left(x+y\right)\left(x-y\right)=2018\)
Dễ c/m: x và y phải cùng chẵn hoặc cùng lẻ (Vì nếu 1 trong 2 số x,y lẻ thì tích (x=y)(x-y) lẻ, vô lí)
Lúc đó \(\hept{\begin{cases}x+y⋮2\\x-y⋮2\end{cases}}\)
\(\Rightarrow\left(x-y\right)\left(x+y\right)⋮4\)
Mà 2018 không chia hết cho 4 nên điều g/s là sai
Vậy không tồn tại cặp số nguyên x,y thoả mãn \(x^2-2018=y^2\)(đpcm)
Ta có : x2 - 2018 = y2
=> x2 - y2 = 2018
=> (x + y)(x - y) = 2018
Nếu x ; y \(\inℤ\)ta có : 2018 = 1.2018 = 2.1009 = (-1).(-2018) = (-2).(-1009)
Lập bảng xét 8 trường hợp ta có :
x - y | 1 | 2018 | 2 | 1009 | -1 | -2018 | -1009 | -2 |
x + y | 2018 | 1 | 1009 | 2 | -2018 | -1 | -2 | -1009 |
x | 2019/2 | 2009/2 | 1011/2 | 1011/2 | -2019/2 | -2019/2 | -1011/2 | -1011/2 |
y | 2017/2 | -2007/2 | 1007/2 | -1007/2 | -2017/2 | 2017/2 | -1007/2 | 1007/2 |
=> Không tồn tại cặp số nguyên x,y thỏa mãn
Mình có 1 cách làm khác ngắn hơn nè, chỉ mất 3 dòng thôi
Do 1 số chính phương chia 4 dư 0 hoặc 1 (tính chất)
Nếu x^2 chia 4 dư 0 (x chẵn). Mà 2018 chia 4 dư 2
=> x^2-2018 chia 4 dư 2 => y^2 chia 4 dư 2=> Vô lí=> Loại
Nếu x^2 chia 4 dư 1 (x lẻ). Mà 2018 chia 4 dư 2
=> x^2-2018 chia 4 dư 3 => y^2 chia 4 dư 3=> Vô lí=> Loại
Thế nên không tồn tại x,y nguyên => đpcm
chứng minh rằng không tồn tại x thỏa mãn :x4-x3+2x2-x+1=0
giúp mk vs!
Ta biến đổi phương trình thành:
\(\left(x^4+2x^2+1\right)-\left(x^3+x\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)^2-x\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2+1-x\right)=0\)
Với mọi \(x\in R\)ta có \(x^2+1>0\)
và \(x^2-x+1=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
Cả 2 nhân tử ở vế trái đều dương nên tích không thể bằng 0. Hay không tồn tại x thỏa mãn đề bài.
x4-x3+2x2-x+1=0 (1)
<=>x4-x3+x2+x2-x+1=0
<=>x2(x2-x+1)+x2-x+1=0
<=>(x2+1)(x2-x+1)=0
<=>x2+1=0 hoặc x2-x+1=0
Với x2+1=0.Ta thấy x2+1>0 với mọi x ->vô nghiệmVới x2-x+1=0.Ta xét VT\(x^2-x+1\)
\(=x^2-x+\frac{1}{4}+\frac{3}{4}\)
\(=x^2-\frac{x}{2}-\frac{x}{2}+\frac{1}{4}+\frac{3}{4}\)
\(=x\left(x-\frac{1}{2}\right)-\frac{1}{2}\left(x-\frac{1}{2}\right)+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)với mọi x ->vô nghiệm
Vậy (1) không tồn tại x thỏa mãn
Chứng minh rằng không tồn tại số hữu tỉ x,y thoả mãn: x2 + y2=3
Cho bốn số x1; x2; x3; x4 khác 0 thoả mãn x22= x1.x3; x32= x2.x4
Chứng minh rằng: \(\frac{x1}{x4}=\left(\frac{x1+x2+x3}{x2+x3+x4}\right)^3\)
(Nhớ trình bày cụ thể nhé)
Chứng minh rằng không tồn tại các số nguyên x; y thoả mãn đẳng thức:\(12x^2+26xy+15y^2=4617\)
Chứng minh rằng không tồn tại các số nguyên x; y thoả mãn đẳng thức:\(\text{12x^2+ 26xy + 15y^2 = 4617}\)