Những câu hỏi liên quan
TA
Xem chi tiết
NN
Xem chi tiết
NQ
28 tháng 7 2021 lúc 22:33

ta có

\(\hept{\begin{cases}f\left(1\right)=1\\f\left(2\right)=4\end{cases}\Leftrightarrow\hept{\begin{cases}a+b=1\\2a+b=4\end{cases}}}\)

lấy hiệu hai phương trình ta có :

\(\left(2a+b\right)-\left(a+b\right)=4-1\Leftrightarrow a=3\Rightarrow b=-2\)

Bình luận (0)
 Khách vãng lai đã xóa
AE
Xem chi tiết
NN
6 tháng 5 2023 lúc 8:22

a) Ta có f(7) = a7 + b và f(2) + f(3) = (a2+ b) + (a3 + b) = 5a + 2b. Vậy để f(7) = f(2) + f(3), ta cần giải phương trình:
a7 + b = 5a + 2b
Simplifying, ta được: 2a = b.
Vậy điều kiện của a và b để f(7) = f(2) + f(3) là b = 2a.
b) Để tìm nghiệm của P(x), ta cần giải phương trình (x-2)(2x+5) = 0:
(x-2)(2x+5)= 0
→ X-2 = 0 hoặc 2x+5 = 0
→ x = 2 hoặc x = -5/2
Vậy nghiệm của P(x) là x = 2 hoặc x =-5/2.
c) Ta biết rằng đa thức P(x) có 1 nghiệm là -2, vậy ta có thể viết P(x)

dưới dạng:
P(x) = (x+2)(x^3 - 2x^2 + ax - 2)
Từ đó suy ra:
P(-2) = (-2+2)(8 - 4a - 2) = 0
⇔-8a= 16
⇔a = -2
Vậy hệ số a của P(x) là -2.

Bình luận (0)
AE
7 tháng 5 2023 lúc 18:57

tại sao a7 + b = 5a + 2b lại bằng  2a = b vậy ạ

 

Bình luận (0)
HT
Xem chi tiết
DH
23 tháng 5 2021 lúc 0:22

1) \(\left(x^2-4x+3\right)f\left(x+1\right)=\left(x-2\right)f\left(x-1\right)\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)f\left(x+1\right)=\left(x-2\right)f\left(x-1\right)\)

Với \(x=1\)\(0=-1f\left(0\right)\Leftrightarrow f\left(0\right)=0\)do đó \(0\)là một nghiệm của đa thức \(f\left(x\right)\).

Tương tự xét \(x=2,x=3\)có thêm hai nghiệm nữa là \(3\)và \(2\).

Bình luận (0)
 Khách vãng lai đã xóa
DH
23 tháng 5 2021 lúc 0:24

2) \(f\left(2\right)=4a-2+b=0\Leftrightarrow4a+b=2\)

Tổng hệ số cao nhất và hệ số tự do là \(a+b\)suy ra \(a+b=-7\).

Ta có hệ: 

\(\hept{\begin{cases}4a+b=2\\a+b=-7\end{cases}}\Leftrightarrow\hept{\begin{cases}3a=9\\b=-7-a\end{cases}}\Leftrightarrow\hept{\begin{cases}a=3\\b=-10\end{cases}}\).

Bình luận (0)
 Khách vãng lai đã xóa
ND
Xem chi tiết
H24
21 tháng 4 2017 lúc 20:40

Ta có: f(0) = \(a.0^2+b.0+c=4\)

\(\Rightarrow0+0+c=4\Rightarrow c=4\)

\(f\left(1\right)=a.1^2+b.1+c=3\)

\(\Rightarrow a+b+c=3\Rightarrow a+b=-1\)

\(f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=7\)

\(\Rightarrow a-b+4=7\Rightarrow a-b=3\)

Ta có: \(\left(a+b\right)+\left(a-b\right)=a+a+b-b=2a=-1+3=2\)

\(\Rightarrow a=2:2=1\)

\(\Rightarrow b=-1-1=-2\)

Vậy a=1;b=-2;c=4

Bình luận (0)
TT
21 tháng 4 2017 lúc 20:38

Ta có:\(\hept{\begin{cases}f\left(0\right)=4\\f\left(1\right)=3\\f\left(-1\right)=7\end{cases}}\) \(\hept{\begin{cases}c=4\\a+b=3\\a-b=7\end{cases}}\)

                                                 \(\Rightarrow\hept{\begin{cases}c=4\\a=5\\b=-2\end{cases}}\)

Bình luận (0)
NT
5 tháng 11 2017 lúc 8:54

Mấy ban kia làm dung roi do

k tui nha

thanks

Bình luận (0)
3N
Xem chi tiết
TL
15 tháng 4 2020 lúc 18:25

ta có: f(1)=a.1+b=a+b

do f(1)=1 nên a+b=1 (1)

lại có: f(2)=a.2+b=2a+b

do f(2)=4 nên 2a+b=4 (2)

từ (1) (2) => a=3; b=-2

Bình luận (0)
 Khách vãng lai đã xóa
ND
Xem chi tiết
H24
3 tháng 5 2018 lúc 9:57

Ta có  \(f\left(x\right)=ãx^2+bx+c\)

-Thay x=0 vào đa thức \(f\left(x\right)\) ta được:

\(f\left(0\right)=a.0^2+b.0+c=c=4\)

\(\Rightarrow c=4\)

-Thay x=1 vào đa thức \(f\left(x\right)\)ta được:

\(f\left(1\right)=a.1^2+b.1+c=a+b+c=3\)

mà \(c=0\Rightarrow a+b=0\)\(\left(1\right)\)

-Thay x=-1 vào đa thức \(f\left(x\right)\)ta được:

Bình luận (0)
H24
3 tháng 5 2018 lúc 10:05

mk làm tiếp :Thay x=-1 vào đa thức \(f\left(x\right)\)ta được:

\(f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c\)

                  \(=a-b+3=7\)

        \(\Rightarrow a-b=4\)\(\left(2\right)\)

-Từ \(\left(1\right)\)\(\left(2\right)\)suy ra:

\(\left(a+b\right)+\left(a-b\right)=0+4=4\)

\(\Rightarrow a+b+a-b=4\)

\(\Rightarrow2a=4\Rightarrow a=2\)

-Có  :\(a-b=4\Rightarrow2-b=4\Rightarrow b=-2\)

Vậy \(a=2,b=-2,c=3\)

Bình luận (0)
LC
Xem chi tiết
HS
3 tháng 3 2020 lúc 16:50

a) Ta có \(f\left(x\right)=ax+b\)

+) \(f\left(1\right)=1\)

=> \(f\left(1\right)=a\cdot1+b=1\)

=> \(f\left(1\right)=a+b=1\)(1)

+) \(f\left(2\right)=4\)

=> \(f\left(2\right)=a\cdot2+b=4\)

=> \(f\left(2\right)=2a+b=4\)(2)

Từ (1) và (2) => \(\orbr{\begin{cases}a+b=1\\2a+b=4\end{cases}}\)

=> \(a-2a=1-4\)

=> \(-a=-3\)

=> \(a=3\)

Thay a = 3 vào ta có : \(\orbr{\begin{cases}3+b=1\\2\cdot3+b=4\end{cases}}\)

=> \(\orbr{\begin{cases}3+b=1\\6+b=4\end{cases}}\)

=> b = -2

Vậy a = 3 và b = -2

b) Thay a = 3 và b = -2 vào đa thức \(f\left(x\right)=ax+b\)ta có :

\(f\left(x\right)=3\cdot x+\left(-2\right)=0\)

=> \(3x+\left(-2\right)=0\)

=> \(3x=0-\left(-2\right)\)

=> \(3x=0+2\)

=> \(3x=2\)

=> \(x=\frac{2}{3}\)

Vậy nghiệm của đa thức \(f\left(x\right)=\frac{2}{3}\).

Bình luận (0)
 Khách vãng lai đã xóa
LC
3 tháng 3 2020 lúc 22:07

Cảm ơn bn nha!

Bình luận (0)
 Khách vãng lai đã xóa
FF
Xem chi tiết
H24
7 tháng 3 2019 lúc 6:03

Giải
Vì f(1) = 1 nên ta có a*1 +b =1 <=> a+b =1 (1)
Tương tự ta có f(2)=4 <=> 2a+ b = 4 (2)
Từ (1) và (2) ta giải được a = 3, b= -2

Bình luận (0)