Chứng minh rằng: BCNN(a,b) x ƯCLN(a,b) = a.b
Chứng minh rằng: BCNN(a,b) x ƯCLN(a,b) = a.b
1) đặt d = UCLN(a,b) => tồn tại m, n sao cho: a = dm ; b = dn
thấy UCLN(m, n) = 1, vì nếu m và n có 1 ước chung p > 1
m = p.m' ; n = p.n' thấy a = dpm' ; b = dpn' => dp là UC(a,b) mà dp > d trái giả thiết d là UCLN
vì UCLN(m,n) = 1 nên BCNN(a,b) = dmn
thấy: BCNN(a,b) * UCLN(a,b) = dmn.d = dm.dn = ab (đpcm)
Chứng minh rằng: BCNN(a,b) x ƯCLN(a,b) = a.b
Chứng minh rằng:
BCNN(a,b) x ƯCLN(a,b) = a.b
Chứng minh rằng : BCNN (a, b) = a.b : ƯCLN (a, b)
vì a.b = BCNN(a,b).ƯCLN(a,b)
=>BCNN(a,b)=a,b:ƯCLN(a,b)
Sao thấy bài này giống bài lớp 6 mà
1. Tìm a,b biết
a, a.b= 4320 và BCNN(a,b)= 360
b, a+b = 288 và ƯCLN (a,b)=24
c, BCNN(a,b) - ƯCLN (a,b) = 18
2. Biết ƯCLN (a,b)= 1
Chứng minh rằng ƯCLN (ab, a+b) = 1
Mk cho bạn mấy công thức này chắc bạn cx tự giải đc:
a.b=ƯCLN(a,b).BCNN(a,b)
Nếu ƯCLN(a,b)=c=>a=cm ; b=cn và m,n nguyên tố cùng nhau
Cái bài 2 cm theo phuong pháp phản chứng nhá
ban ay lam dung roi
Chứng minh ƯCLN(A, B) . BCNN(A, B) = A.B
\(Goi:d=UCLN\left(a;b\right)\Rightarrow a=da';b=db'\left(UCLN\left(a';b'\right)=1\right)\)
\(\Rightarrow BCNN\left(a,b\right)=a'b'd\Rightarrow UCLN\left(a,b\right).BCNN\left(a,b\right)=a'b'd^2=ab=a'b'd^2\)
Đặt d = ƯCLN( a,b)=> a = d.a'
( a',b') =1
b=d.b'
Ta cần chứng minh : BCNN( a,b).d=a.b hay BCNN ( a,b)=\(\frac{a.b}{d}\)
Đặt m = \(\frac{a.b}{d}\)
m = b . \(\frac{a}{d}\)=b. a'
Mà ( a',b') =1 => m \(\in\)BCNN (a,b)=> BCNN( a,b )=\(\frac{a.b}{d}\)
BCNN(a,b )=\(\frac{a.b}{ƯCLN\left(a,b\right)}\)
=> BCNN( a,b ) . ƯCLN( a,b ) =a.b
1.cho 2 số tự nhiên và b, ƯCLN (a,b)=7. Tìm a và b biết
a/a+b =56
b/a.b=490
c/ BCNN (a,b)=735
2.Tìm 2 số tự nhiên avaf b, biết rằng a+b=27, ƯCLN (a,b)=3 và BCNN (a,b)=60
3.Tìm 2n số tự nhiên a và b, biết rằng
a/a.b=2940 và BCNN (a,b)=210
b/a.b=160 và BCLN (a,b)=40
c/ a.b=8748 và ƯCLN (a,b)=27
d/a.b=864 và ƯCLN (a,b)=6
1.
\(ƯCLN\left(a,b\right)=7\)
\(\Rightarrow a,b\)chia hết cho 7
\(\Rightarrow a,b\in B\left(7\right)\)
\(B\left(7\right)=\left(0;7;14;21;28;35;42;49;56;63;70;77;84;91;98;105...\right)\)
a, vì a+b=56 \(\Rightarrow\)\(a\le56;b\le56\)
\(\Rightarrow a=56;b=0.a=0;b=56\)
\(a=7;b=49.a=49;b=7\)
\(a=14;b=42.a=42;b=14\)
\(a=21;b=35.a=35;b=21\)
\(a=b=28\)
b, a.b=490 \(\Rightarrow a< 490;b< 490\)
\(\Rightarrow\) \(a=7;b=70-a=70;b=7\)
\(a=14;b=35-a=35;b=14\)
c, BCNN (a,b) = 735
\(\Rightarrow a,b\inƯ\left(735\right)\)
\(Ư\left(735\right)=\left(1;3;5;7;15;21;35;49;105;147;245;735\right)\)
\(\Rightarrow\)\(a=7;b=105-a=105;b=7\)
2.
a+b=27\(\Rightarrow\)\(a\le27;b\le27\)
ƯCLN(a,b)=3
\(\Rightarrow a,b\in B\left(_{ }3\right)\in\left(0;3;6;9;12;15;18;21;24;27;30;...\right)\)
BCNN(a,b)=60
\(\Rightarrow a,b\inƯ\left(60\right)\in\left(1;2;3;4;5;6;10;12;15;20;60\right)\)
\(\Rightarrow\)\(a=12;b=15-a=15;b=12\)
Chứng minh rằng : ƯCLN (a,b) x BCNN (a,b) = a x b
1) Tìm BCNN(a,b) biết a.b = 3375 và ƯCLN(a,b) = 15
2) Tìm a,b biết rằng: a.b = 252 và ƯCLN(a,b) = 2