Những câu hỏi liên quan
NQ
Xem chi tiết
TD
21 tháng 4 2019 lúc 21:00

1/y thành 1/x nhé

H = x2 + 2y2 + 1/x + 24/y

H = ( x2 + 1 ) + 2 ( y2 + 4 ) + 1/x + 24/y

\(\ge\)2x + 8y + 1/x + 24/y = ( x + 1/x ) + ( 6y + 24y ) x + 2y - 9

\(\ge\)2 + 24 + 5 - 9 = 22

Dấu " = " xảy ra khi x = 1 ; y = 2

Bình luận (0)
MM
Xem chi tiết
H24
9 tháng 2 2019 lúc 7:30

\(H=\left(x^2+1\right)+\left(2y^2+8\right)+\frac{1}{x}+\frac{24}{y}-9\)

\(\ge2\sqrt{x^2.1}+2\sqrt{2y^2.8}+\frac{1}{x}+\frac{24}{y}-9\)

\(=2x+8y+\frac{1}{x}+\frac{24}{y}-9\)

\(=\left(\frac{1}{x}+x\right)+\left(\frac{24}{y}+6y\right)+x+2y-9\)

\(\ge2\sqrt{\frac{1}{x}.x}+2\sqrt{\frac{24}{y}.6y}+x+2y-9\)

\(=2+24+x+2y-9\ge26+5-9=22\)

Dấu "=" xảy ra khi x = 1; y = 2

Vậy ....

Bình luận (0)
H24
9 tháng 2 2019 lúc 7:42

Mấy bài này chủ yếu là kiểm tra kĩ năng chọn điểm rơi và áp dụng BĐT AM-GM (Cô si) đúng chỗ thôi chứ có gì đâu?

Bình luận (0)
PL
Xem chi tiết
PH
10 tháng 2 2019 lúc 16:57

1. Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) với \(a=x^3+3xy^2,b=y^3+3x^2y\) (a;b > 0)

(Bất đẳng thức này a;b > 0 mới dùng được)

\(A\ge\frac{4}{x^3+3xy^2+y^3+3x^2y}=\frac{4}{\left(x+y\right)^3}\ge\frac{4}{1^3}=4\)

Dấu "=" xảy ra khi: \(\hept{\begin{cases}x^3+3xy^2=y^3+3x^2y\\x+y=1\end{cases}\Leftrightarrow\hept{\begin{cases}x^3-3x^2y+3xy^2-y^3=0\\x+y=1\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x-y\right)^3=0\\x+y=1\end{cases}}\Leftrightarrow x=y=\frac{1}{2}\)

Bình luận (0)
H24
Xem chi tiết
KS
9 tháng 3 2019 lúc 18:20

\(H=x^2+2y^2+\frac{1}{x}+\frac{24}{y}\)

\(\Leftrightarrow H=\left(\frac{1}{2}x^2+\frac{1}{2x}+\frac{1}{2x}\right)+\left(\frac{3}{2}y^2+\frac{12}{y}+\frac{12}{y}\right)+\left(\frac{1}{2}x^2+\frac{1}{2}\right)+\left(\frac{1}{2}y^2+2\right)-\frac{5}{2}\)

Áp dụng BĐT AM-GM ta có:

\(H\ge3.\sqrt[3]{\frac{1}{2}x^2.\frac{1}{2x}.\frac{1}{2x}}+3.\sqrt[3]{\frac{3}{2}y^2.\frac{12}{y}.\frac{12}{y}}+2.\sqrt{\frac{1}{2}x^2.\frac{1}{2}}+2.\sqrt{\frac{1}{2}y^2.2}-\frac{5}{2}=\frac{3}{2}+18+x+2y-\frac{5}{2}\ge22\)Dấu " = " xảy ra <=> \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)( tự giải nhé )

KL:....

Bình luận (0)
TM
Xem chi tiết
NL
Xem chi tiết
ND
Xem chi tiết
PN
Xem chi tiết
H24
13 tháng 1 2020 lúc 23:30

\(\left(\frac{1}{x}+\frac{1}{y}\right)\sqrt{1+x^2y^2}\)

\(\ge\frac{2}{\sqrt{xy}}\sqrt{1+x^2y^2}=2\sqrt{\frac{1}{xy}+xy}=2\sqrt{\frac{1}{16xy}+xy+\frac{15}{16xy}}\)

\(\ge2\sqrt{2\sqrt{\frac{1}{16xy}\cdot xy}+\frac{15}{4\left(x+y\right)^2}}=2\sqrt{\frac{1}{2}+\frac{15}{4}}=\sqrt{17}\)

Dấu "=" xảy ra tai x=y=1/2

Bình luận (0)
 Khách vãng lai đã xóa
HT
Xem chi tiết