Tìm các số nguyên x ,y thỏa mãn phương trình (2x+1)=x+1
1, Tìm tất cả các số nguyên x, y thỏa mãn phương trình 2x ^ 2 + y ^ 2 + 3xy - 3x - 3y + 11 = 0
Tìm số nguyên x,y thỏa mãn 2 phương trình sau : 2y^2x + x + y + 1 = x^2 + 2y^2 + xy
=>(x-1)(2y^2+y+1)= -2
lập hệ phương trình ng nguyên các ước của hai rồi giải
Tìm các cặp số nguyên x, y thỏa mãn phương trình |x| + 2019|y − 2020| = 1
Bạn tham khảo hình ảnh :
Cre : lazi.vn
Hok tốt
bạn tham khảo:
nguồn: lazi.vn
~HT~
Ta có |x| + 2019|y - 2020| = 1
=> |x| \(\le\)1
mà |x| \(\ge0\forall x\)
=> \(0\le\left|x\right|\le1\Rightarrow x\in\left\{0;1;-1\right\}\)
Thay x = 0 vào |x| + 2019|y - 2020| = 1
=> 0 + 2019|y - 2020| = 1
<=> \(\left|y-2020\right|=\frac{1}{2019}\)
=> \(\orbr{\begin{cases}y-2020=\frac{1}{2019}\\y-2020=-\frac{1}{2019}\end{cases}}\Leftrightarrow y=2020\pm\frac{1}{2019}\)(loại)
Thay x = 1 vào phương trình
=> 2019|y - 2020| = 0
<=> |y - 2020| = 0
<=> y - 2020 = 0
<=> y = 2020
Khi x = -1 => 2019|y - 2020| = 0
<=> |y - 2020| = 0
=> y - 2020 = 0
=> y = 2020
Vậy cặp (x;y) thỏa là (1;2020) ; (-1;2020)
Câu 1: Cho a, b là bình phương của 2 số nguyên lẻ liên tiếp. Chứng minh: ab – a – b + 1 chia hết 48
Câu 2: Tìm tất cả các số nguyên x y, thỏa mãn x > y > 0: x^3 + 7y = y^3 +7x
Câu 3: Giải phương trình : (8x – 4x^2 – 1)(x^2 + 2x + 1) = 4(x^2 + x + 1)
bài 2 :
x3+7y=y3+7x
x3-y3-7x+7x=0
(x-y)(x2+xy+y2)-7(x-y)=0
(x-y)(x2+xy+y2-7)=0
\(\left\{{}\begin{matrix}x-y=0\Rightarrow x=y\left(loại\right)\\x^{2^{ }}+xy+y^2-7=0\end{matrix}\right.\)
x2+xy+y2=7 (*)
Giải pt (*) ta đc hai nghiệm phan biệt:\(\left[{}\begin{matrix}x=1va,y=2\\x=2va,y=1\end{matrix}\right.\)
Tìm các số nguyên dương x,y thỏa mãn phương trình: xy+2x=32-\(\frac{x}{y}\)
Tìm các số nguyên x, y thỏa mãn phương trình 3^x - y^3 =1
Bài 1: Tìm các số nguyên x,y thỏa mãn xy+2x-3y=1
Bài 2: Tìm các số nguyên dương x,y,z thỏa mãn (x+1)(y+z)=xyz+2
Bài 1: Tìm các số nguyên x,y thỏa mãn xy+2x-3y=1
Bài 2: Tìm các số nguyên dương x,y,z thỏa mãn (x+1)(y+z)=xyz+2
Tìm các cặp số (x,y) nguyên dương thỏa mãn phương trình sau:x^2-y^2+2x-4y-10=0
\(x^2-y^2+2x-4y-10=0\)
\(\Rightarrow\left(x^2+2x+1\right)-\left(y^2+4y+4\right)-7=0\)
\(\Rightarrow\left(x+1\right)^2-\left(y+2\right)^2=7\)
\(\Rightarrow\left(x+1+y+2\right)\left(x+1-y-2\right)=4\)
\(\Rightarrow\left(x-y-1\right)\left(x+y+3\right)=7\)
Vì \(x,y\) nguyên dương nên \(x+y+3>x-y-1>0\)
\(\Rightarrow\hept{\begin{cases}x+y+3=7\\x-y-1=1\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=3\\y=1\end{cases}}\)
Tìm các cặp số nguyên x , y thỏa mãn phương trình: x^3 = y^3 - 2y^2 + 3y - 1