Những câu hỏi liên quan
NT
Xem chi tiết
VN
Xem chi tiết
H24
20 tháng 3 2022 lúc 19:23

A

Bình luận (0)
NT
20 tháng 3 2022 lúc 19:23

B

Bình luận (0)
VH
20 tháng 3 2022 lúc 19:24

b

Bình luận (0)
TM
Xem chi tiết
BC
9 tháng 4 2016 lúc 22:34

Chiều rộng là : 15 : ( 5 - 3 ) x 3 = 22,5 m

Chiều dài là : 15 + 22,5 = 37,5 m

Chu vi là : ( 37,5 + 22,5 ) x 2 = 120 m

Diện tích là : 37,5 x 22,5 = 843,75 m2

Bình luận (0)
BC
9 tháng 4 2016 lúc 22:53

Ta có: (a+b-c)/c=(b+c-a)/a=(c+a-b)/b=(a+b-c+b+c... (a+b+c)=(a+b+c)/(a+b+c)=1 
=>(a+b-c)/c=1 => a+b-c=c =>a+b=2c (1) 
Tương tự: (b+c-a)/a=1 =>b+c=2a (2) 
(c+a-b)/b=1 =>c+a=2b (3) 
Thay (1), (2), (3) vào P, ta có: 
P=(a+b)/a . (b+c)/b .(a+c)/c=2c/a.2a/b.2b/c=2.2.2=8. Hết nhưng sách thì chia ra hai trường hợp như sau: 
Từ giả thiết, suy ra: 
(a+b-c)/c+2=(b+c-a)/a+2=(c+a-b)/b+2 
<=> (a+b+c)/c=(b+c+a)/a=(c+a+b)/b 
Xét 2 trường hợp: 
Nếu a+b+c=0 => (a+b)/a.(b+c)/b.(c+a)/c=((-c)(-a)(-b))/a... 
Nếu a+b+c khác 0 =>a=b=c =>P=2.2.2=8

Bình luận (0)
H24
Xem chi tiết
H24
31 tháng 3 2023 lúc 20:41

Bạn nên ấn vô biểu tượng \(\Sigma\) để đặt câu hỏi thì sẽ dễ nhìn hơn nhé.

Bình luận (0)
H24
31 tháng 3 2023 lúc 21:15

=1 nhé

Bình luận (0)
NL
Xem chi tiết
H24
Xem chi tiết
H24
3 tháng 7 2019 lúc 18:52

Câu 2 (Bổ Sung) : Chứng minh tam giác đã cho là tam giác đều

Bình luận (0)
DN
Xem chi tiết
DN
Xem chi tiết
PQ
25 tháng 4 2018 lúc 12:38

Ta có : 

\(a+b+c=0\)

\(\Rightarrow\)\(\hept{\begin{cases}a+b=-c\\b+c=-a\\a+c=-b\end{cases}}\)

Đặt \(P=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\) ta có : 

\(P=\left(\frac{b}{b}+\frac{a}{b}\right)\left(\frac{c}{c}+\frac{b}{c}\right)\left(\frac{a}{a}+\frac{c}{a}\right)\)

\(P=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}\)

Thay \(a+b=-c\)\(;\)\(b+c=-a\) và \(a+c=-b\) vào \(P=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}\) ta được : 

\(P=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}\)

\(P=\frac{-abc}{abc}\)

\(P=-1\)

Vậy \(P=-1\)

Chúc bạn học tốt ~ 

Bình luận (0)
DN
25 tháng 4 2018 lúc 12:41

thanks bạn

Bình luận (0)
LA
Xem chi tiết
AH
23 tháng 7 2021 lúc 18:28

Lời giải:

$\frac{1}{c}=-(\frac{1}{a}+\frac{1}{b})< 0$ do $a,b>0$

$\Rightarrow c< 0$

$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow ab+bc+ac=0$

Từ đây ta có:

\((\sqrt{a+c}+\sqrt{b+c})^2=a+c+b+c+2\sqrt{(a+c)(b+c)}\)

\(=a+b+2c+2\sqrt{ab+bc+ac+c^2}=a+b+2c+2\sqrt{c^2}\)

\(=a+b+2c+2|c|=a+b+2c+2(-c)=a+b\)

\(\Rightarrow \sqrt{a+c}+\sqrt{b+c}=\sqrt{a+b}\) (do \(\sqrt{a+c}+\sqrt{b+c}\geq 0\))

Ta có đpcm.

Bình luận (0)