Những câu hỏi liên quan
H24
Xem chi tiết
HQ
26 tháng 1 2016 lúc 19:51

Ta có:6=-1 (mod 7) => 6^1000=1(mod 7) => 6^1000-1 chia hết cho 7

Vậy A là bội của 7

Từ 6^1000=1(mod 7) => 6^1001=6(mod 7), mà 6=-1(mod 7)

=> 6^1001=-1(mod 7) => 6^1001+1 chia hết cho 

Vậy B là bội của 7

 

Bình luận (0)
EA
Xem chi tiết
CH
8 tháng 1 2018 lúc 16:28

Bài 1: Em tham khảo tại đây nhé.

Câu hỏi của Nguyễn Tuyết Mai - Toán lớp 6 - Học toán với OnlineMath

Bình luận (0)
H24
Xem chi tiết
H24
22 tháng 10 2023 lúc 8:51
Để chứng minh rằng số m cũng là một bội số của 121, ta cần chứng minh rằng (16a+17b)(17a+16b) chia hết cho 11 và 121.

Đầu tiên, chúng ta xét xem (16a+17b)(17a+16b) chia hết cho 11 hay không. Ta biểu diễn số m = (16a+17b)(17a+16b) dưới dạng m = 272a^2 + 528ab + 272b^2.

Vì 11 là một số nguyên tố, nên theo tính chất của phép nhân, để m là một bội số của 11, thì mỗi thành phần của m cũng phải là một bội số của 11.

Ta thấy rằng 272a^2 và 272b^2 đều chia hết cho 11, vì 272 chia hết cho 11. Vì vậy, ta chỉ cần chứng minh rằng 528ab chia hết cho 11 để kết luận m là một bội số của 11.

Để chứng minh điều này, ta sử dụng tính chất căn bậc hai modulo 11. Ta biết rằng căn bậc hai của 11 là 5 hoặc -5 (vì 5^2 = 25 ≡ 3 (mod 11)). Vì vậy, ta có:

(16a+17b)(17a+16b) ≡ (5a+6b)(6a+5b) (mod 11).

Mở ngoặc, ta được:

(5a+6b)(6a+5b) ≡ 30ab + 30ab ≡ 60ab ≡ 6ab (mod 11).

Vì 6 không chia hết cho 11, nên 6ab cũng không chia hết cho 11. Do đó, ta kết luận rằng 528ab không chia hết cho 11 và m là một bội số của 11.

Tiếp theo, chúng ta cần chứng minh rằng m là một bội số của 121. Để làm điều này, ta cần chứng minh rằng m chia hết cho 121.

Một cách để chứng minh rằng m chia hết cho 121 là tìm một số tự nhiên k sao cho m = 121k. Để làm điều này, chúng ta cần tìm một số tự nhiên k sao cho (16a+17b)(17a+16b) = 121k.

Ta biểu diễn số m = (16a+17b)(17a+16b) dưới dạng m = 272a^2 + 528ab + 272b^2.

Chúng ta đã chứng minh rằng m là một bội số của 11, vậy m = 11m' với m' là một số tự nhiên.

Thay thế m vào công thức m = 272a^2 + 528ab + 272b^2, ta có:

11m' = 272a^2 + 528ab + 272b^2.

Chia cả hai vế của phương trình cho 11, ta có:

m' = 24a^2 + 48ab + 24b^2.

Như vậy, m' là một số tự nhiên. Điều này cho thấy rằng m chia hết cho 121 và m là một bội số của 121.

Để tìm tổng tất cả các số tự nhiên có hai chữ số không chia hết cho 3 và 5, chúng ta cần tìm tổng của tất cả các số tự nhiên từ 10 đến 99 không chia hết cho 3 và 5.

Để tính tổng này, chúng ta có thể sử dụng công thức tổng của một dãy số từ một số đến một số khác. Công thức này là:

Tổng = (Số lượng số trong dãy) * (Tổng của số đầu tiên và số cuối cùng) / 2,

trong đó, Số lượng số trong dãy = (Số cuối cùng - Số đầu tiên) + 1.

Áp dụng công thức này vào bài toán, ta có:

Số đầu tiên = 10, Số cuối cùng = 99, Số lượng số trong dãy = (99 - 10) + 1 = 90.

Tổng = 90 * (10 + 99) / 2 = 90 * 109 / 2 = 90 * 54,5 = 4.905.

Vậy tổng tất cả các số tự nhiên có hai chữ số không chia hết cho 3 và 5 là 4.905.

Bình luận (0)
H24
Xem chi tiết
H24
22 tháng 10 2023 lúc 8:25

Bài toán 1: Để chứng minh số m cũng là một bội số của 121, ta sẽ sử dụng một số tính chất của phép chia.

Ta có: m = (16a + 17b)(17a + 16b) = (17a + 16b)^2 - (ab)^2

Vì m là một bội số của 11, nên ta có thể viết m dưới dạng m = 11k, với k là một số tự nhiên.

Từ đó, ta có (17a + 16b)^2 - (ab)^2 = 11k.

Áp dụng công thức (a + b)^2 - (ab)^2 = (a - b)^2, ta có (17a + 16b + ab)(17a + 16b - ab) = 11k.

Ta có thể chia hai trường hợp để xét:

Trường hợp 1: (17a + 16b + ab) chia hết cho 11. Trường hợp 2: (17a + 16b - ab) chia hết cho 11.

Trong cả hai trường hợp trên, ta đều có một số tự nhiên tương ứng với mỗi trường hợp.

Do đó, nếu m là một bội số của 11, thì m cũng là một bội số của 121.

Bài toán 2: Để tìm tổng tất cả các số tự nhiên có hai chữ số không chia hết cho 3 và 5, ta cần xác định tập hợp các số thỏa mãn điều kiện trên và tính tổng của chúng.

Các số tự nhiên hai chữ số không chia hết cho 3 và 5 có dạng AB, trong đó A và B lần lượt là các chữ số từ 1 đến 9.

Ta thấy rằng có 3 chữ số (3, 6, 9) chia hết cho 3 và 2 chữ số (5, 0) chia hết cho 5. Vì vậy, số các chữ số không chia hết cho 3 và 5 là 9 - 3 - 2 = 4.

Do đó, mỗi chữ số A có 4 cách chọn và mỗi chữ số B cũng có 4 cách chọn.

Tổng tất cả các số có hai chữ số không chia hết cho 3 và 5 là 4 x (1 + 2 + 3 + ... + 9) x 4 = 4 x 45 x 4 = 720.

Vậy tổng tất cả các số tự nhiên có hai chữ số không chia hết cho 3 và 5 là 720.

Bình luận (0)
HM
Xem chi tiết
DA
Xem chi tiết
NT
Xem chi tiết
NT
17 tháng 2 2020 lúc 11:38

Mình đang cần gấp.Các bạn giúp nha

Bình luận (0)
 Khách vãng lai đã xóa
NL
8 tháng 3 2021 lúc 19:59

Mình chỉ làm được bài một thôi:

BÀI 1:                                                                                Giải

Gọi ƯCLN(a;b)=d (d thuộc N*)

=> a chia hết cho d ; b chia hết cho d

=> a=dx ; b=dy  (x;y thuộc N , ƯCLN(x,y)=1)

Ta có : BCNN(a;b) . ƯCLN(a;b)=a.b

=> BCNN(a;b) . d=dx.dy

=> BCNN(a;b)=\(\frac{dx.dy}{d}\)

=> BCNN(a;b)=dxy

mà BCNN(a;b) + ƯCLN(a;b)=15

=> dxy + d=15

=> d(xy+1)=15=1.15=15.1=3.5=5.3(vì x; y ; d là số tự nhiên)

TH 1: d=1;xy+1=15

=> xy=14 mà ƯCLN(a;b)=1

Ta có bảng sau:

x11427
y14172
a11427
b14172

TH2: d=15; xy+1=1

=> xy=0(vô lý vì ƯCLN(x;y)=1)

TH3: d=3;xy+1=5

=>xy=4

mà ƯCLN(x;y)=1

TA có bảng sau:

x14
y41
a312
b123

TH4:d=5;xy+1=3

=> xy = 2

Ta có bảng sau:

x12
y21
a510
b105

.Vậy (a;b) thuộc {(1;14);(14;1);(2;7);(7;2);(3;12);(12;3);(5;10);(10;5)}

Bình luận (0)
 Khách vãng lai đã xóa
TN
Xem chi tiết
NL
2 tháng 4 2017 lúc 15:49

cái gì thế này???????????????????????????????????

Bình luận (0)
NN
31 tháng 10 2021 lúc 11:16

mik lp 6 nhưng nhìn bài của bn mik ko hiểu j cả luôn ý

Bình luận (0)
 Khách vãng lai đã xóa
KK
Xem chi tiết
IM
22 tháng 11 2016 lúc 18:38

Vì 2 n - 1 là số chính phương . Mà 2n - 1 lẻ

\(\Rightarrow2n+1=1\left(mod8\right)\)

=> n \(⋮\) 4

=> n chẵn

=> n+1 cũng là số lẻ

\(\Rightarrow n+1=1\left(mod8\right)\)

=> n \(⋮\) 8

Mặt khác :

\(3n+2=2\left(mod3\right)\)

\(\Rightarrow\left(n+1\right)+\left(2n+1\right)=2\left(mod3\right)\)

Mà n+1 và 2n+1 là các số chính phương lẻ

\(\Rightarrow n+1=2n+1=1\left(mod3\right)\)

=> n chia hết cho 3

Mà ( 3 ; 8 ) = 1

=> n chia hết cho 24

Bình luận (2)
H24
22 tháng 11 2016 lúc 19:13

Vì n + 1 và 2n + 1 đêu là phân số chính phương nên đặt n+1 = k\(^2\), 2n+1 = m\(^2\)( k, m \(\in\) N)

Ta có m là số lẻ => m = 2a+1 =>m\(^2\)= 4a(a+1)+1

=>n=\(\frac{m^2-1}{2}\)=\(\frac{4a\left(a+1\right)}{2}\)=2a(a+1)

=> n chẵn =>n+1 là số lẻ =>k lẻ =>Đặt k = 2b+1 (Với b \(\in\) N) =>k\(^2\)=4b(b+1)+1

=> n=4b(b+1) =>n \(⋮\)8 (1)

Ta có k\(^2\) + m\(^2\) =3n+2=2 ( mod3)

Mặt khác k\(^2\) chia 3 dư 0 hoặc 1 ,m\(^2\)chia 3 dư 0 hoặc 1

Nên để k\(^2\)+m\(^2\) =2 (mod3) thì k\(^2\) = 1(mod3)

m\(^2\) = 1 (mod3)

=>m\(^2\)-k\(^2\)\(⋮\)3 hay (2n+1)-(n+1) \(⋮\)3 =>n \(⋮\) 3

Mà (8;3)=1

Từ (1) ; (2) và (3) => n \(⋮\) 24

Bình luận (0)
NH
20 tháng 3 2017 lúc 15:06

mod3

Bình luận (0)