Những câu hỏi liên quan
LD
Xem chi tiết
BN
16 tháng 11 2019 lúc 17:32

mình thấy hơi khó

Bình luận (0)
 Khách vãng lai đã xóa
MN
Xem chi tiết
TD
Xem chi tiết
NN
18 tháng 2 2016 lúc 6:21

nếu giả sử câu b cũng tương tự như câu a thi ta co cach nhu sau

4 mũ n-1 chia hết cho 3 thì suy ra     n=2

Bình luận (0)
TN
Xem chi tiết
H24
2 tháng 4 2018 lúc 22:42

  zdvdz

Bình luận (0)
DH
Xem chi tiết
H24
Xem chi tiết
NO
26 tháng 11 2021 lúc 22:09

A) Vì 2013 là số lẻ nên (\(1^{2013}+2^{2013}\)+....\(n^{2013}\)): (1+2+...+n)

Hay( \(1^{2013}+2^{2013}\)+\(3^{2013}\)+......\(n^{2013}\)) :\(\dfrac{n\left(n+1\right)}{2}\)

=>2(\(1^{2013}+2^{2013}\)+\(3^{2013}\)+......\(n^{2013}\)):n(n+1)(đpcm)

B)

Do 1 lẻ , \(2q^2\) chẵn nên p lẻ

p2−1⇔\(2q^2\)(p−1)(p+1)=\(2q^2\)

p lẻ nên p−1 và p+1đều chẵn ⇒(p−1)(p+1)⋮4

\(q^2\):2 =>q:2 =>q=2 

\(q^2\)=2.2\(^2\)+1=9=>q=3

 Chắc đúng vì hôm trước cô mik giải thik v 
Bình luận (1)
H24
26 tháng 11 2021 lúc 22:14

a, Vì 2013 là số lẻ nên (\(^{1^{2013}+2^{2013}+...n^{2013}}\))⋮(1+2+...+n)

=>\(\left(1^{2013}+2^{2013}+...+n^{2013}\right)\)\(\dfrac{n\left(n+1\right)}{2}\)

=>\(2\left(1^{2013}+2^{2013}+...+n^{2003}\right)\)⋮n(n+1)

đpcm

Bình luận (0)
NM
Xem chi tiết
TP
Xem chi tiết
DN
Xem chi tiết