CMR nếu ab +cd chia hết cho 11 thì abcd chia hết cho11 {ab;cd;abcd có gạch trên đầu}
chứng tỏ rằng:
A) Số aaa chia hết cho 37(a khác 0)
B) ab - ba chia hết cho 9
C) nếu ab+ cd chia hết cho11 thì abcd chia hết cho 11
A) 37.3=111, aaa=a.111 nên aaa chia hết cho 37
B)ab= 10a +b, ba=10b+a nên ab-ba =9a-9b=9(a-b) chia hết cho 9
A) 37.3=111, aaa=a.111 nên aaa chia hết cho 37
CMR nếu ab + cd chia hết cho 11 thì abcd chia hết cho 11
ta có:
abcd=100.ab+cd=99.ab+ab+cd=99.ab+(ab+cd)
mà 99.ab=11.9.ab chia hết cho 11
ab+cd chia hết cho 11(theo đề)
=>99.ab+(ab+cd) chia hết cho 11
=>abcd chia hết cho 11(đpcm)
chứng mnh rằng nếu (ab +cd) chia hết cho 11 thì abcd chia hết cho11
Ta có ab + cd chia hết cho 11 nên ab + cd = 11k (k \(\in\) N*)
Do đó abcd = ab . 100 + cd = ab . 99 + ab + cd = ab . 9 . 11 + 11k = 11.(ab . 9 + k) chia hết cho 11
Ta có: abcd = 100ab + cd = 99ab + ab + cd
Vì 99 chia hết cho 11 => 99ab chia hết cho 11 mà ab + cd chia hết cho 11 => 99ab + ab + cd chia hết cho 11 hay abcd chia hết cho 11 (đpcm)
CMR: ab+cd chia hết cho 11 thì abcd chia hết cho 11
Ta có:
abcd = ab.100 +cd = ab.99 +ab +cd = ab.9.11 + ab +cd
Vì ab.9.11 chia hết cho 11 nên để abcd chia hết cho 11 thì ab + cd phải chia hết cho 11
Vậy nếu ab+ cd chia hết cho 11 thì abcd chia hết cho 11
CMR:ab+cd+eg chia hết cho 11 thì abcdeg chia hết cho11
abcdeg = 10000.ab + 100.cd + eg = 9999.ab + 99.cd + (ab + cd + eg)
Vì 9999.ab chia hết cho 11, 99.cd chia hết cho 11 và ab + cd + eg chia hết cho 11
=> abcdeg chia hết cho 11 (đpcm)
cho abc khác 0 CMR:
a) M=ab+ba chia hết cho 11
b)abc-cba chia hết cho 99
c)Nếu abcd chia hết cho 99 thì ab+cd chia hết cho 99
B1 CMR nếu (ab+cd):hết cho 11 thì abcd :hết cho11
B2 CMRa)abba:hết cho 11
b)abcabc:hết cho 11;7;13
c)cho(abc-deg):hết cho 13 CMR abcdeg :hết cho13
B3 cho abc :hết cho 7 CM (2a+3b+c):hết cho 7
dễ , bạn đợi đến 21h30 nhá mình bận tí
Chứng minh rằng
Nếu (ab + cd + eg) chia hết cho 11 thì số tự nhiên abcdeg chia hết cho11
Lưu ý: ab ; cd ; eg là một số có hai chữ số
Giải hộ mình nhé
dấu hiệu chia hết cho 11: một số chia hết cho 11 khi và chỉ khi :tổng các chữ số hàng chẵn-tổng các chữ số hàng lẻ chia hết cho 11
theo giả thiết:/ab+/cd+/eg = 10a + b + 10c + d + 10e + g = 11(a+c+e) + (b+d+g) - (a+c+e) chia hết cho 11
suy ra: (b+d+g) - (a+c+e) chia hết cho 11
suy ra : /abcdeg chia hết cho 11
Ta có : abcdeg=10000ab + 100cd + eg
= 9999ab + ab + 99cd+ cd + eg
= 9999ab+99cd+(ab+cd+eg)
Vì 9999ab+99cd chia hết cho 11 và đầu bài cho ab+cd+eg chia hết cho 11
=>abcdeg chie hết cho 11
CMR nếu ab chia hết cho 11 thì abcd chia hết cho 11
Không có đủ cơ sở để đưa ra kết luận này bạn nhé.