Giá trị nhỏ nhất của biểu thức A=/\(2x+\frac{1}{5}\)/+/\(2x+\frac{1}{6}\)/+/\(2x+\frac{1}{7}\)/
Biểu thức A=\(\left|2x+\frac{1}{5}\right|+\left|2x+\frac{1}{6}\right|+\left|2x+\frac{1}{7}\right|\)
Đạt giá trị nhỏ nhất khi x=...
Áp dụng \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)
\(A=\left(\left|2x+\frac{1}{5}\right|+\left|-2x-\frac{1}{7}\right|\right)+\left|2x+\frac{1}{6}\right|\ge\left|2x+\frac{1}{5}-2x-\frac{1}{7}\right|+0=\frac{2}{35}\)
Dấu "=" xảy ra khi x = -1/12
Á ghi nhầm dấu + thành -. Sửa lại cho mình là x = -1/12 nhé !
Ta có;\(\left|2x+\frac{1}{7}\right|=\left|-2x-\frac{1}{7}\right|\ge-2x-\frac{1}{7};\left|2x+\frac{1}{6}\right|\ge0;\left|2x+\frac{1}{5}\right|\ge2x+\frac{1}{5}\)
\(\Rightarrow A\ge2x+\frac{1}{5}+0-2x-\frac{1}{7}=\frac{2}{35}\)
dấu "=" xảy ra <=>\(2x+\frac{1}{7}\le0;2x+\frac{1}{6}=0;2x+\frac{1}{5}\ge0\)
=>x=-1/12
vậy GTNN của A là 2/35 khi x=-1/12
tick nhé
Biểu thức A=\(\left|2x+\frac{1}{5}\right|+\left|2x+\frac{1}{6}\right|+\left|2x+\frac{1}{7}\right|\)
Đạt giá trị nhỏ nhất khi x=...
Biểu thức \(A=\left|2x+\frac{1}{5}\right|+\left|2x+\frac{1}{6}\right|+\left|2x+\frac{1}{7}\right|\)đạt giá trị nhỏ nhất khi x=....
Amin=\(\frac{2}{35}\Leftrightarrow x=-\frac{1}{12}\)
Biểu thức A = \(\left|2x+\frac{1}{5}\right|+\left|2x+\frac{1}{6}\right|+\left|2x+\frac{1}{7}\right|\)
đạt giá trị nhỏ nhất khi x = ......
ta có:
\(\left|2x+\frac{1}{7}\right|=\left|-2x-\frac{1}{7}\right|;\left|-2x-\frac{1}{7}\right|\ge-2x-\frac{1}{7}\)
\(\left|2x+\frac{1}{6}\right|\ge0;\left|2x+\frac{1}{5}\right|\ge2x+\frac{1}{5}\)
=> \( A\ge2x+\frac{1}{5}+0-2x-\frac{1}{7}=\frac{2}{35}\)
dấu "=" xảy ra <=>\(x=-\frac{1}{12}\)
Cho biểu thức A= |2x+\(\frac{1}{5}\)|+\(\left|2x+\frac{1}{6}\right|+\left|2x+\frac{1}{7}\right|\)Hỏi biểu thức này đạt giá trị nhỏ nhất khi x = bao nhiêu?
biểu thức đạt GTNN là 2/35 <=>x=\(-\frac{1}{12}\)
a) tìm x sao cho giá trị của biểu thức \(\frac{3x-2}{4}\)không nhỏ hơn giá trị của biểu thức \(\frac{3x+3}{6}\)
b) tìm x sao cho giá trị của biểu thức (x+1)2 nhỏ hơn giá trị của biểu thức (x--1)2
c) tìm x sao cho giá trị của biểu thức\(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}\)không lớn hơn giá trị của biểu thức \(\frac{x^2}{7}-\frac{2x-3}{5}\)
d) tìm x sao cho giá trị của biểu thức \(\frac{3x-2}{4}\)không lớn hơn giá trị của biểu thức \(\frac{3x+3}{6}\)
a) Để giá trị biểu thức 5 – 2x là số dương
<=> 5 – 2x > 0
<=> -2x > -5 ( Chuyển vế và đổi dấu hạng tử 5 )
\(\Leftrightarrow x< \frac{5}{2}\)( Chia cả 2 vế cho -2 < 0 ; BPT đổi chiều )
Vậy : \(x< \frac{5}{2}\)
b) Để giá trị của biểu thức x + 3 nhỏ hơn giá trị biểu thức 4x - 5 thì:
x + 3 < 4x – 5
<=< x – 4x < -3 – 5 ( chuyển vế và đổi dấu các hạng tử 4x và 3 )
<=> -3x < -8
\(\Leftrightarrow x>\frac{8}{3}\)( Chia cả hai vế cho -3 < 0, BPT đổi chiều).
Vậy : \(x>\frac{8}{3}\)
c) Để giá trị của biểu thức 2x +1 không nhỏ hơn giá trị của biểu thức x + 3 thì:
2x + 1 ≥ x + 3
<=> 2x – x ≥ 3 – 1 (chuyển vế và đổi dấu các hạng tử 1 và x).
<=> x ≥ 2.
Vậy x ≥ 2.
d) Để giá trị của biểu thức x2 + 1 không lớn hơn giá trị của biểu thức (x - 2)2 thì:
x2 + 1 ≤ (x – 2)2
<=> x2 + 1 ≤ x2 – 4x + 4
<=> x2 – x2 + 4x ≤ 4 – 1 ( chuyển vế và đổi dấu hạng tử 1; x2 và – 4x).
<=> 4x ≤ 3
\(\Leftrightarrow x\le\frac{3}{4}\)( Chia cả 2 vế cho 4 > 0 )
Vậy : \(x\le\frac{3}{4}\)
tìm giá trị nhỏ nhất của biểu thức A= \(\frac{2x^2-6x+5}{x^2-2x+1}\)
\(A=\frac{2x^2-6x+5}{x^2-2x+1}=\frac{x^2-4x+4+x^2-2x+1}{x^2-2x+1}\)
\(=\frac{\left(x-2\right)^2+\left(x-1\right)^2}{\left(x-1\right)^2}=\frac{\left(x-2\right)^2}{\left(x-1\right)^2}+1\)
Vì \(\hept{\begin{cases}\left(x-2\right)^2\ge0\\\left(x-1\right)^2\ge0\end{cases}}\)\(\Rightarrow\frac{\left(x-2\right)^2}{\left(x-1\right)^2}\ge0\)\(\Rightarrow\frac{\left(x-2\right)^2}{\left(x-1\right)^2}+1\ge1\)
\(\Rightarrow A\ge1\).Nên GTNN của \(A=1\) đạt được khi \(x=2\)
a)tìm giá trị nhỏ nhất của biểu thức:
A= \(\left(2x+\frac{1}{3}\right)^4\)-1
b) Tìm giá trị lớn nhất của biểu thức :
B=\(-\left(\frac{4}{9}x-\frac{2}{15}\right)^6+3\)
Hai bài này có mấy cái bình phương sẵn rồi nên chỉ sài cái bất đẳng thức \(A^2\ge0\)là được rồi
a/Ta có \(\left(2x+\frac{1}{3}\right)^4\ge0\)
Do đó \(\left(2x+\frac{1}{3}\right)^4-1\ge0-1\)
\(\Leftrightarrow A\ge-1\)
Tới đây vì A lớn hơn hoặc bằng -1 nên giá trị nhỏ nhất của A là -1
Vậy Giá trị nhỏ nhất của A là -1
b/Bạn làm hệt như câu a, với lại nếu bạn suy ra \(A\ge-1\)thì bạn kết luận luôn Giá trị nhỏ nhất của A là -1
e cái gì là em bé à
Tìm giá trị nhỏ nhất của biểu thức sau:
B= (x+2)^2+(y-5/2)^2018-10
D= |2x-1|+|2x-5|
Tìm giá trị LỚN nhất của biểu thức
A= \(\frac{3}{\left(2x-3\right)^4+5}\)
C= \(\frac{27-2x}{12-x}\) (x thuộc Z)