Những câu hỏi liên quan
PB
Xem chi tiết
CT
10 tháng 9 2017 lúc 9:21

Ta có: xyz + x2y2z2 + x3y3z3 + ….. + x10y10z10

      = xyz + (xyz)2 + (xyz)3 + ….. + (xyz)10

Với x = 1; y = -1; z = - 1 ta có: xyz = 1.(-1).(-1) = 1

Thay vào đa thức: 1 + 12 + 13 + … + 110 = 10

Bình luận (0)
NV
Xem chi tiết
LG
Xem chi tiết
HK
Xem chi tiết
KO
1 tháng 1 2016 lúc 10:34

3x²y²z² = x³y³ y³z³ z³x³ 
(3x²y²z²) / (x³y³ y³z³ z³x³) = 1
3.[(x²y²z²) / (x³y³ y³z³ z³x³)] = 1
(x²y²z²) / (x³y³ y³z³ z³x³) = 1/3
(x²y²z²) / (x³y³) (x²y²z²) / (y³z³) (x²y²z²) / (z³x³) = 1/3
z²/(xy) x/(yz) y²/(zx) = 1/3
Vậy x²/(yz) y²/(xz) z²/(xy) = 1/3

Bình luận (0)
PB
Xem chi tiết
CT
5 tháng 11 2019 lúc 6:00

Thay x = 1; y = -1; z = 3 vào biểu thức, ta có:

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Vậy giá trị của biểu thức xyz + Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7 bằng -4 tại x = 1; y = -1; z = 3

Bình luận (0)
KD
Xem chi tiết
TH
15 tháng 1 2021 lúc 18:05

\(\dfrac{1}{1+x+xy}+\dfrac{1}{1+y+yz}+\dfrac{1}{1+z+zx}\)

\(=\dfrac{1}{1+x+xy}+\dfrac{x}{x+xy+xyz}+\dfrac{xy}{xy+xyz+xyzx}\)

\(=\dfrac{1}{1+x+xy}+\dfrac{x}{x+xy+1}+\dfrac{xy}{xy+1+x}\) (Do xyz = 1)

\(=1\).

Bình luận (0)
LQ
Xem chi tiết
NP
21 tháng 4 2020 lúc 19:33

TLMJFDLIIS HFIEHFU ưAUDSEIq

Bình luận (0)
 Khách vãng lai đã xóa
PD
21 tháng 4 2020 lúc 19:53

1, Tính giá trị biểu thức sau tại x+y+1=0

\(D=x^2\left(x+y\right)-y^2\left(x+y\right)+x^2-y^2+2\left(x+y\right)+3\left(1\right)\)

Ta có: x + y + 1 = 0 => x + y = -1

(1) \(\Leftrightarrow x^2.\left(-1\right)-y^2.\left(-1\right)+\left(x-y\right)\left(x+y\right)+2.\left(-1\right)+3\)

\(=y^2-x^2+\left(x-y\right)\left(-1\right)-2+3\)

\(=\left(y-x\right)\left(y+x\right)-\left(x-y\right)+1\)

\(=\left(y-x\right).\left(-1\right)-x+y+1\)

\(=-y+x-x+y+1\)

\(=1\)

2, Cho xyz=2 và x+y+z=0

Tính giá trị biểu thức

\(M=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

Ta có: x + y + z = 0

=> x + y = -z (1)

=> y + z = -x (2)

=> x + z = -y (3)

Từ (1);(2);(3) 

=> \(M=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)<=> (-z).(-x).(-y) = 0

Bình luận (0)
 Khách vãng lai đã xóa
TL
21 tháng 4 2020 lúc 20:10

1, x+y+z=1

\(D=x^2\left(x+y\right)-y^2\left(x+y\right)+x^2-y^2+2\left(x+y\right)+3\)

\(=\left(x+y\right)\left(x^2-y^2+2\right)+x^2-y^2+3\)

\(=\left(x+y\right)\left(x^2-y^2+2\right)+\left(x^2-y^2+2\right)+1\)

\(=\left(x^2-y^2+2\right)\left(x+y+1\right)+1\)

=1 (vì x+y+1=0)

2, x+y+z=0 <=> \(\hept{\begin{cases}x=-\left(y+z\right)\\y=-\left(x+z\right)\\z=-\left(x+y\right)\end{cases}}\)

Nhân theo vế ta được: xyz=\(-\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

\(\Rightarrow2=-\left(x+y\right)\left(y+z\right)\left(x+z\right)\)

=> (x+y)(y+z)(z+x)=-2

Bình luận (0)
 Khách vãng lai đã xóa
LD
Xem chi tiết
ST
12 tháng 1 2018 lúc 20:39

\(A=\frac{x}{xy+x+1}+\frac{y}{y+1+yz}+\frac{z}{1+z+xz}\)

\(=\frac{x}{xy+x+1}+\frac{xy}{xy+x+xyz}+\frac{xyz}{xy+xyz+x^2yz}\)

\(=\frac{x}{xy+x+1}+\frac{xy}{xy+x+1}+\frac{1}{xy+1+x}\)

\(=\frac{xy+x+1}{xy+x+1}=1\)

Bình luận (0)
PD
12 tháng 1 2018 lúc 18:28

\(\frac{x}{xy+x+1}+\frac{xy}{yx+x+xyz}+\frac{xyz}{xy+xyz+x^2yz}\)

\(\frac{x}{xy+x+1}+\frac{xy}{yx+x+1}+\frac{1}{xy+1+x}\)

\(\frac{x+xy+1}{xy+x+1}=1\)

Bình luận (0)
NT
Xem chi tiết
DI
14 tháng 3 2020 lúc 20:26

Ta có : 

\(A=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\)

\(=\frac{x+y}{y}.\frac{y+z}{z}.\frac{z+x}{x}\)

Do x + y + z = 0 => x+y = -z ; y+z = -x ; z+x = -y

\(\Rightarrow A=\frac{-z}{y}.\frac{-x}{z}.\frac{-y}{x}=\frac{\left(-1\right).xyz}{xyz}=-1\)

Bình luận (0)
 Khách vãng lai đã xóa
TM
Xem chi tiết
NT
22 tháng 5 2022 lúc 17:47

\(A=\dfrac{1}{xy+x+1}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+z+1}\)

\(A=\dfrac{1}{xy+x+xyz}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+z+1}\)

\(A=\dfrac{1}{x\left(y+1+yz\right)}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+z+1}\)

\(A=\dfrac{xyz}{x\left(y+1+yz\right)}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+z+1}\)

\(A=\dfrac{yz}{y+1+yz}+\dfrac{1}{y+yz+1}+\dfrac{1}{xz+z+1}\)

\(A=\dfrac{yz+1}{y+1+yz}+\dfrac{1}{xz+z+1}\)

\(A=\dfrac{yz+xyz}{y+xyz+yz}+\dfrac{1}{xz+z+1}\)

\(A=\dfrac{y\left(z+xz\right)}{y\left(1+xz+z\right)}+\dfrac{1}{xz+z+1}\)

\(A=\dfrac{z+xz+1}{xz+z+1}\)

\(A=1\)

 

 

 

Bình luận (1)
HN
22 tháng 5 2022 lúc 17:59

\(A=\dfrac{1}{xy+x+1}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+z+1}\)\(A=\dfrac{z}{1+xz+z}+\dfrac{xz}{z+1+xz}+\dfrac{1}{xz+z+1}\)(vì xyz=1)

\(A=\dfrac{z+xz+1}{xz+z+1}\)\(A=1\)

Xong rồi nè bn ơi hihi

 

Bình luận (0)
TH
22 tháng 5 2022 lúc 19:51

\(\dfrac{1}{xy+x+1}+\dfrac{1}{yz+y+1}+\dfrac{1}{xz+z+1}\)

\(=\dfrac{1}{\dfrac{1}{z}+\dfrac{1}{yz}+1}+\dfrac{1}{yz+y+1}+\dfrac{1}{\dfrac{1}{y}+z+1}\)

\(=\dfrac{1}{\dfrac{y+1+yz}{yz}}+\dfrac{1}{yz+y+1}+\dfrac{1}{\dfrac{1+zy+y}{y}}\)

\(=\dfrac{yz}{y+1+yz}+\dfrac{1}{yz+y+1}+\dfrac{y}{1+zy+y}=\dfrac{y+yz+1}{y+yz+1}=1\)

Bình luận (0)