Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
BY
Xem chi tiết
BY
22 tháng 6 2017 lúc 9:48

moi nguoi giai nhanh giup minh nhe

Bình luận (0)
MN
Xem chi tiết
NP
9 tháng 10 2017 lúc 20:35

1/. y là số nguyên tố nhỏ nhất suy ra y = 2

Để X632 chia hết cho 9 thì X + 3 + 6 + 2 phải chia hết cho 9

Mà X + 3 + 6 +2 = X + 11 => X = 7 (vì 11 + 7 = 18, 18 chia hết cho 9)

2/. Để 6x 3y chia cho 5 dư 1 thì y có thể bằng 1 hoặc 6

Nếu y bằng 1 ta được số 6x31 mà tổng các chữ số của số đó là: 6 + x + 3 + 1 = 10 + x khi 10 + x chia hết cho 3.

=> x = 2 ; 5 ; 8; y = 1

Nếu y = 6 ta được số 6x36 mà tổng các chữ số của số đó là: 6 + x + 3 + 6 = x + 15 khi 15 chai hết cho 3.

=> x = các số chai hết cho 3 trong khoảng từ 0 đến 9 : 0; 3 ;6; 9; y = 6

3/ Nếu x không phải số nguyên tố hay hợp số thì x = 0 hoặc 1 (nhưng 0 không thể đứng đầu một số hạng nên x = 1)

Ta có số 163y chia hết cho 3 mà tổng các chữ số của số đó là: 1 + 6 + 3 + y khi 1 + 6 + 3 + y = 10 + y.

=> y = 2 ; 5 ; 8; x = 1

Bình luận (0)
TC
Xem chi tiết
VN
Xem chi tiết
NP
25 tháng 12 2014 lúc 9:58

Số nguyên tố lớn hơn 3 sẽ có dạng 3k+1 hay 3k+2  (k thuộc N)

Nếu p=3k+1 thì p+2=3k+1+2=3k+3=3.(k+1) là số nguyên tố. Vì 3.(k+1) chia hết cho 3 nên dạng p=3k+1 không thể có.

Vậy p có dạng 3k+2 (thật vậy, p+2=3k+2+2=3k+4 là 1 số nguyên tố).

=>p+1=3k+2+1=3k+3=3.(k+1) chia hết cho 3.

Mặt khác, p là 1 số nguyên tố lớn hơn 3 cũng như lớn hơn 2 nên p là 1 số nguyên tố lẻ => p+1 là 1 số chẵn => p+1 chia hết cho 2.

Vì p chia hết cho cả 2 và 3 mà ƯCLN(2,3)=1 nên p+1 chia hết cho 6.

 

Bình luận (0)
PT
6 tháng 4 2016 lúc 11:33

phuong ne 3(k+1)sao la so nguyen to duoc

Bình luận (0)
DD
1 tháng 1 2024 lúc 15:31

p là số nguyên tố lớn hơn 3

=>p không chia hết cho 3

=>p=3k+1;3k+2

xét p=3k+1=>p+2=3k+3=3(k+1) chia hết cho 3

=>p+2 là hợp số(Vô lí)

=>p=3k+2

=>p+1=3k+3=3(k+1)

p là số nguyên tố lớn hơn 3

=>p là số lẻ

=>p+1 là số chẵn

=>p+1 chia hết cho 2

Vì (3;2)=1=>p+1 chia hết cho 6

=>đpcm

Bình luận (0)
MN
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
BA
Xem chi tiết
LD
7 tháng 9 2020 lúc 12:00

1. a là số tự nhiên chia 5 dư 1

=> a = 5k + 1 ( k thuộc N )

b là số tự nhiên chia 5 dư 4

=> b = 5k + 4 ( k thuộc N )

Ta có ( b - a )( b + a ) = b2 - a2

                                   = ( 5k + 4 )2 - ( 5k + 1 )2

                                   = 25k2 + 40k + 16 - ( 25k2 + 10k + 1 )

                                   = 25k2 + 40k + 16 - 25k2 - 10k - 1

                                   = 30k + 15

                                   = 15( 2k + 1 ) chia hết cho 5 ( đpcm )

2. 2n2( n + 1 ) - 2n( n2 + n - 3 )

= 2n3 + 2n2 - 2n3 - 2n2 + 6n

= 6n chia hết cho 6 ∀ n ∈ Z ( đpcm )

3. n( 3 - 2n ) - ( n - 1 )( 1 + 4n ) - 1

= 3n - 2n2 - ( 4n2 - 3n - 1 ) - 1

= 3n - 2n2 - 4n2 + 3n + 1 - 1

= -6n2 + 6n

= -6n( n - 1 ) chia hết cho 6 ∀ n ∈ Z ( đpcm )

Bình luận (0)
 Khách vãng lai đã xóa
LT
Xem chi tiết