Những câu hỏi liên quan
LL
Xem chi tiết
NX
Xem chi tiết
ND
Xem chi tiết
NT
24 tháng 8 2023 lúc 23:23

a) \(\dfrac{27}{35}>\dfrac{19}{35}>\dfrac{19}{41}\)

\(\Rightarrow\dfrac{27}{35}>\dfrac{19}{41}\)

b) \(\dfrac{120}{121}< \dfrac{120+1}{121+1}=\dfrac{121}{122}\)

\(\Rightarrow\dfrac{120}{121}< \dfrac{121}{122}\)

Bình luận (0)
ND
26 tháng 8 2023 lúc 18:44

.

 

Bình luận (0)
H24
Xem chi tiết
DM
16 tháng 3 2017 lúc 21:22

Mẫu số chung : \(LCM\left(60;120;36;90;72\right)=360\)

Quy đồng mẫu số :

\(\dfrac{360}{360}+\dfrac{-6}{360}+\dfrac{57}{360}< \dfrac{10\cdot x}{360}< \dfrac{232}{360}+\dfrac{295}{360}+\dfrac{-6}{360}\)

\(\Leftrightarrow\dfrac{411}{360}< \dfrac{10\cdot x}{360}< \dfrac{521}{360}\)

Vậy tập hợp các giá trị của x là \(x=\left\{42;43;44;45;46;47;48;49;50;51;52\right\}\)

Bình luận (1)
NQ
Xem chi tiết
H24
10 tháng 5 2021 lúc 19:57

`S=1/19+1/19^2+1/19^3+........+1/19^20`

`=>19S=1+1/19+1/19^2+.....+1/19^19`

`=>19S-S=18S=1-1/19^20<1`

`=>S<1/18(đpcm)`

Bình luận (5)

Giải:

S=\(\dfrac{1}{19}+\dfrac{1}{19^2}+\dfrac{1}{19^3}+...+\dfrac{1}{19^{10}}\) 

19S=\(1+\dfrac{1}{19}+\dfrac{1}{19^2}+...+\dfrac{1}{19^9}\) 

19S-S=\(\left(1+\dfrac{1}{19}+\dfrac{1}{19^2}+...+\dfrac{1}{19^9}\right)-\left(\dfrac{1}{19}+\dfrac{1}{19^2}+\dfrac{1}{19^3}+...+\dfrac{1}{19^{10}}\right)\) 

18S=1-\(\dfrac{1}{19^{10}}\) 

S=(1-\(\dfrac{1}{19^{10}}\) ):18

S=\(1:18-\dfrac{1}{19^{10}}:18\) 

S=\(\dfrac{1}{18}-\dfrac{1}{19^{10}.18}\) 

⇒S<\(\dfrac{1}{18}\) (đpcm)

Chúc bạn học tốt!

Bình luận (0)
CR
10 tháng 5 2021 lúc 20:06

S = 119+1192+1193+........+11920S=119+1192+1193+........+11920

⇒ 19S=1+119+1192+.....+11919⇒19S=1+119+1192+.....+11919

⇒ 19S−S=18S=1−11920<1⇒19S-S=18S=1-11920<1

⇒ S<118(đpcm)

Bình luận (0)
PN
Xem chi tiết
LA
30 tháng 1 2023 lúc 19:22

\(A=\dfrac{19+\dfrac{18}{2}+\dfrac{17}{3}+\dfrac{16}{4}+...+\dfrac{1}{19}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}\)

Biến đổi tử số 

\(19+\dfrac{18}{2}+\dfrac{17}{3}+\dfrac{16}{4}+...+\dfrac{1}{19}\)

= 1 + \(\left(1+\dfrac{18}{2}\right)+\left(1+\dfrac{17}{3}\right)+\left(1+\dfrac{16}{4}\right)+...+\left(1+\dfrac{1}{19}\right)\)

\(\dfrac{20}{20}+\dfrac{20}{2}+\dfrac{20}{3}+...+\dfrac{1}{19}\)

= 20 x \(\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{19}+\dfrac{1}{20}\right)\)

Vậy \(A=\dfrac{19+\dfrac{18}{2}+\dfrac{17}{3}+\dfrac{16}{4}+...+\dfrac{1}{19}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}\)

\(\dfrac{20\times\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{19}+\dfrac{1}{20}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}=20\)

Vậy A = 20

Bình luận (0)
PN
30 tháng 1 2023 lúc 19:39

c.ơn nhìu a

Bình luận (0)
DT
Xem chi tiết
HN
3 tháng 5 2017 lúc 12:00

Ta có: \(\dfrac{1}{19}+\dfrac{2}{18}+...+\dfrac{19}{1}=\left(\dfrac{1}{19}+1\right)+\left(\dfrac{2}{18}+1\right)+...+1\)

\(=\dfrac{20}{19}+\dfrac{20}{18}+...+\dfrac{20}{2}+\dfrac{20}{20}=20\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}\right)\)

Thế lại bài toán ta được

\(\dfrac{\dfrac{1}{19}+\dfrac{2}{18}+...+\dfrac{19}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}}=\dfrac{20\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{20}}=20\)

Bình luận (0)
MV
3 tháng 5 2017 lúc 14:04

Ta có

\(\dfrac{1}{19}+\dfrac{2}{18}+\dfrac{3}{17}+...+\dfrac{19}{1}\\ =\dfrac{1}{19}+1+\dfrac{2}{18}+1+\dfrac{3}{17}+1+...+\dfrac{19}{1}+1-19\\ =\dfrac{20}{19}+\dfrac{20}{18}+\dfrac{20}{17}+...+\dfrac{20}{1}-19\\ =\dfrac{20}{19}+\dfrac{20}{18}+...+\dfrac{20}{2}+20-19\\ =\dfrac{20}{19}+\dfrac{20}{18}+\dfrac{20}{17}+...+\dfrac{20}{2}+1+19-19\\ =\dfrac{20}{20}+\dfrac{20}{19}+\dfrac{20}{18}+...+\dfrac{20}{2}\\ =20\cdot\left(\dfrac{1}{20}+\dfrac{1}{19}+\dfrac{1}{18}+...+\dfrac{1}{2}\right)\)

Thế vào ta có:

\(\dfrac{\dfrac{1}{19}+\dfrac{2}{18}+\dfrac{3}{17}+...+\dfrac{19}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{20}}\\ =\dfrac{20\cdot\left(\dfrac{1}{20}+\dfrac{1}{19}+\dfrac{1}{18}+...+\dfrac{1}{2}\right)}{\dfrac{1}{20}+\dfrac{1}{19}+\dfrac{1}{18}+...+\dfrac{1}{2}}\\ =20\)

Bình luận (0)
TD
Xem chi tiết
MN
8 tháng 6 2021 lúc 16:00

\(\dfrac{1}{120}\cdot120+x:\dfrac{1}{3}=-4\)

\(\Leftrightarrow1+x\cdot3=-4\)

\(\Leftrightarrow3x=-5\)

\(\Leftrightarrow x=-\dfrac{5}{3}\)

Bình luận (0)

\(\dfrac{1}{120}.120+x:\dfrac{1}{3}=-4\) 

            \(1+x:\dfrac{1}{3}=-4\) 

                  \(x:\dfrac{1}{3}=-4-1\) 

                  \(x:\dfrac{1}{3}=-5\) 

                        \(x=-5.\dfrac{1}{3}\) 

                        \(x=\dfrac{-5}{3}\)

Bình luận (0)
LL
Xem chi tiết
PA
25 tháng 9 2024 lúc 22:42

    Mới thế đã hai năm trôi qua,câu trả lời từ mọi người vẫn KO XUẤT HIỆN.

    Ko biết sau này câu trả lời có xuất hiện hay ko...

Bình luận (0)