Chứng tỏ rằng 3n+3/3n+2 là phân số tối giản
Chứng tỏ rằng phân số \(\dfrac{2n+1}{3n+2}\) là phân số tối giản
gọi d là ƯCLN(2n+1;3n+2).theo bài ra ta có:
2n+1 chia hết cho d=>6n+3 chia hết cho d
3n+2 chia hết cho d=>6n+4 chia hết cho d
=>1 chia hết cho d=>d=1
vậy ...
Gọi d ϵ ƯCLN\(\left(\dfrac{2n+1}{3n+2}\right)\)
Nên 2n+1⁝ d và 3n+2 ⁝ d
⇒ 3(2n+1) ⁝ d và 2(3n+2)
⇒ 6n+3 ⁝ d và 6n+4 ⁝ d
⇒ ( 6n+4 - 6n+3) ⁝ d
⇒ 1⁝ d
⇒ d= 1
Vậy:..
Chúc bạn học tốt
chứng tỏ rằng:3n/3n+1(n thuộc Z)là phân số tối giản
3n và 3n+1 là 2 số nguyên liên tiếp nên phân số 3n/3n+1 là ps tối giản
chứng tỏ rằng 3n/3n+1 ( n thuộc N)là phân số tối giản
Ta có : \(\frac{3n}{3n+1}\) với \(n\inℕ\)
Mà 3n và 3n+1 là 2 số tự nhiên liên tiếp
Vì 2 số tự nhiên liên tiếp có ƯCLN là 1
\(\Rightarrow\)ƯCLN(3n, 3n+1)=1 nên phân số \(\frac{3n}{3n+1}\)tối giản(đpcm)
Bạn cũng có chứng minh bằng cách tìm ƯCLN(3n,3n+1)=1 nhé!
Chứng tỏ rằng 3n/3n+1 (n thuộc N) là phân số tối giản
Gọi d là ƯCLN (3n;3n+1) ( d thuộc N*)
=> 3a+1-3a chia hết chi d
=> 1 chia hết cho d
mà d thuộc N* => d=1
=> \(\frac{3n}{3n+1}\)là phân số tối giản
3n và 3n +1 là 2 số TN liên tiếp nên ƯCLN(3n, 3n+1)=1------>3n/3n+1 là phân số tối giản
chứng tỏ rằng phân số 2n+1\3n+2 là phân số tối giản ?
https://h.vn/hoi-dap/question/39186.html
Gọi d là ƯCLN ( 2n + 1 ; 3n + 2 )( d thuộc N* )
=> 2n + 1 chia hết cho d ; 3n + 2 chia hết cho d
=> 3( 2n + 1 ) chia hết cho d ; 2( 3n + 2 ) chia hết cho d
=> 6n + 3 chia hết cho d ; 6n + 4 chia hết cho d
=> ( 6n + 4 ) - ( 6n + 3 ) chia hết cho d
=> 6n + 4 - 6n - 3 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN( 2n + 1 ; 3n + 2 ) = 1
Chứng tỏ phân số 2n + 1/3n + 2 tối giản
Gọi d là ƯC của 2n + 1 và 3n + 3
Ta có: 2n + 1 ⋮ d => 6n + 3 ⋮ d
Và 2n + 2 ⋮ d => 6n + 4 ⋮ d
Do đó:
(6n + 4) - (6n + 3) ⋮ d
=> (6n - 6n) (4 - 3) ⋮ d
=> 1 ⋮ d => d = 1
Hay ƯC(2n + 1, 3n + 2) = 1
=> 2n + 1 / 3n + 2 tối giản
chứng tỏ rằng phân số 2n+1/3n+2 chứng tỏ là phân số tối giản
GỌI Đ LÀ ƯC (2N+1/3N+2)
=>2N+2 CHIA HẾT CHO Đ=>3(2N+3) CHIA HẾT CHO Đ
=>3N+2CHIA HẾT CHO Đ=>2(3N+4) CHIA HẾT CHO DD
=>(6N+3)-(6N+4) CHIA HẾT CHO Đ
=>1 CHIA HẾT CHO Đ
=>Đ=1
=>2N+1/3N+2 LÀ P/S TỐI GIẢN
Chứng tỏ rằng 3n/3n+1 (n thuộc N) là phân số tối giản
Ta có 3n; 3n + 1 là 2 số tự nhiên liên tiếp
\(\Rightarrow\) 3n; 3n + 1 là 2 số nguyên tố cùng nhau
\(\Rightarrow\frac{3n}{3n+1}\) là phân số tối giản
chứng tỏ rằng phân số 2n+1\3n+2 là phân số tối giản ?
GIẢI TIẾP : Từ [1] và [2] => 1 chia hết cho d => d = 1
=> dpcm
cho minh cai dung
gọi d là ƯCLN(2n+1;3n+2).theo bài ra ta có:
2n+1 chia hết cho d=>6n+3 chia hết cho d
3n+2 chia hết cho d=>6n+4 chia hết cho d
=>1 chia hết cho d=>d=1
=>ĐPCM
Gọi d = ƯCLN(2n + 1; 3n + 2) (d thuộc N*)
=> 2n + 1 chia hết cho d; 3n + 2 chia hết cho d
=> 3.(2n + 1) chia hết cho d; 2.(3n + 2) chia hết cho d
=> 6n + 3 chia hết cho d; 6n + 4 chia hết cho d
=> (6n + 4) - (6n + 3) chia hết cho d
=> 6n + 4 - 6n - 3 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(2n + 1; 3n + 2) = 1
Chứng tỏ phân số 2n + 1/3n + 2 tối giản
chứng tỏ rằng phân số 2n+1 phần 3n+2 là phân số tối giản
Gọi d là ƯCLN(2n+1;3n+2)
Ta có 2n+1 chia hết cho d nên 3(2n+1) cũng chia hết cho d hay 6n+3 cũng chia hết cho d
3n+2 chia hết cho d nên 2(3n+2) cũng chia hết cho d hay 6n+4 cũng chia hết cho d
Ta suy ra [(6n+4)-(6n+3)] chia hết cho d
(6n+4-6n-3) chia hết cho d
1 chia hết cho d
nên d=1
Vì ƯCLN(2n+1;3n+2)=1 nên 2n+1 phần 3n+2 là phân số tối giản (tick nhé )
Gọi a là ước chung lớn nhất của \(\frac{2n+1}{3n+2}\)
suy ra 2n+1 chia hết cho a
3n+2 chia hết cho a
nên 3.(2n+1) chia hết cho a
2(3n+2) chia hết cho a
=> 6n+3 chia hết cho a
6n+4 chia hết cho a
vậy (6n+4)-(6n+3) chia hết cho a
1 chia hết cho a
vậy a=1
=> phân số \(\frac{2n+1}{3n+2}\) là phân số tối giản.
chứng tỏ rằng 3n+2 phần 5n+3 là phân số tối giản [với n thuộc n]
Gọi d = (5n + 3 ; 3n + 2) (d thuộc N)
=> (5n + 3) chia hết cho d và (3n + 2) chia hết cho d
=> 5.(3n + 2) - 3.(5n + 3) chia hết cho d
=> 1 chia hết cho d
=> d = 1 (vì d thuộc N)
=> ƯCLN(5n + 3 ; 3n + 2) = 1
=> Phân số 5n+3/3n+2 tối giản với mọi n thuộc N