Những câu hỏi liên quan
H24
Xem chi tiết
TS
12 tháng 3 2015 lúc 21:15

mình trả lời bài 1 thôi nhé :

Gọi biểu thức trên là A.

Theo bài ra ta có:A=1/1.6+1/6.11+1/11.16+...+1/(5n+1)+1/(5n+6)

                           =1/5(1-1/6+1/6-1/11+1/11-1/16+...+1/5n+1-1/5n+6)

                           =1/5(1-1/5n+6)

                           =1/5( 5n+6/5n+6-1/5n+6)

                           =1/5(5n+6-1/5n+6)

                           =1/5.5n+5/5n+6

                           =n+1/5n+6

                           =ĐIỀU PHẢI CHỨNG MINH

 

Bình luận (0)
KT
30 tháng 4 2015 lúc 20:56

x- 20/11.13 - 20/13.15 - 20/13.15 - 20/15.17 -...- 20/53.55=3/11

x-10.(2/11.13+2/13.15+2/15.17+...+2/53.55=3/11

x-10.(1/11-1/13+1/13-1/15+1/15-1/17+...+1/53-1/55)=3/11

x-10.(1/11-1/55)=3/11

x-10.4/55=3/11

x-8/11=3/11

x = 3/11+8/11

x=11/11=1

****

Bình luận (0)
PH
5 tháng 3 2016 lúc 19:08

ban Optimus Prime sai dau bai rui

Bình luận (0)
NM
Xem chi tiết
NN
Xem chi tiết
LB
Xem chi tiết
LD
18 tháng 1 2018 lúc 12:19

ai TL đc giúp tui đi

Bình luận (0)
NH
Xem chi tiết
MD
25 tháng 10 2015 lúc 14:31

a) 2 + 4 + 6 + ... +  2n = 210 

1.2 + 2.2 + 2.3 + ... + 2n = 210

2.(1+2+3+...+n) = 210

1 + 2 + 3 + ... + n = 105

\(\frac{n\left(n+1\right)}{2}\)= 105

n(n+1) = 210

n(n+1) = 14.15

=> n = 14

Bình luận (0)
H24
30 tháng 7 2016 lúc 13:45

b) 1+3+5+...+(2n-1)=225

\(\frac{\left(2n-1+1\right).n}{2}\)  =225

\(\frac{2n.n}{2}\) =225

\(\frac{2.n^2}{2}\)     =225

\(n^2\) =225

Ta có: \(n^2\)  =225  = \(3^2\).\(5^2\)\(\left(15\right)^2\)

=> n = 15

Bình luận (0)
MD
25 tháng 10 2015 lúc 14:31

Câu a tương tự câu c và d

Bình luận (0)
TP
Xem chi tiết
HG
25 tháng 7 2015 lúc 23:43

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+....+\frac{2}{x\left(x+1\right)}=\frac{2000}{2002}\)

\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+.....+\frac{2}{x\left(x+1\right)}=\frac{2000}{2002}\)

\(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{x\left(x+1\right)}\right)=\frac{2000}{2002}\)

\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2000}{2002}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{2000}{2002}:2=\frac{1000}{2002}\)

=> \(\frac{1}{x+1}=\frac{1}{2}-\frac{1000}{2002}=\frac{1}{2002}\)

=> x + 1 = 2002 

=> x = 2002 - 1 

=> x = 2001

Bình luận (0)
NT
28 tháng 1 2018 lúc 21:01

Bạn Hồ Thu Giang làm rất tốt!

Bình luận (0)
AH
Xem chi tiết
HG
9 tháng 8 2015 lúc 13:19

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{x\left(x+1\right)}=\frac{1999}{2001}\)

\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{1999}{2001}\)

\(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{1999}{2001}\)

\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1999}{2001}:2=\frac{1999}{4002}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{1999}{4002}\)

\(\frac{1}{x+1}=\frac{1}{2}-\frac{1999}{2001}=\frac{1}{2001}\)

=> x + 1 = 2001

=> x = 2001 - 1

=> x = 2000

Bình luận (0)
TT
9 tháng 8 2015 lúc 13:19

\(\Rightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+..+\frac{2}{x\left(x+1\right)}=\frac{1999}{2001}\)

\(2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+..+\frac{1}{x\left(x+1\right)}\right)=\frac{1999}{2001}\)

   \(\frac{1}{6}+\frac{1}{12}+..+\frac{1}{x\left(x+1\right)}=\frac{1999}{2001}:\frac{1}{2}\)

  \(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{1999}{4002}\)

  \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+..+\frac{1}{x}-\frac{1}{x+1}=\frac{1999}{4002}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{1999}{4002}\)

      \(\frac{1}{x+1}=\frac{1}{2}-\frac{1999}{4002}\)

    \(\frac{1}{x+1}=\frac{1}{2001}\)

=> x + 1 = 2001

=> x =    2001 - 1

=> x = 2000 

Bình luận (0)
H24
Xem chi tiết
HB
Xem chi tiết
TK
Xem chi tiết