Những câu hỏi liên quan
TH
Xem chi tiết
BL
Xem chi tiết
ST
22 tháng 11 2017 lúc 19:26

Ta có: A = n2 - 1 = (n - 1)(n + 1)

Vì n là số nguyên tố lớn hơn 3 nên (n - 1)(n + 1) là tích hai số chẵn liên tiếp => A \(⋮\) 8 (1)

Vì n là số nguyên tố lớn hơn 3 nên n có dạng 3k + 1 hoặc 3k + 2 (k thuộc N)

- Nếu n = 3k + 1 thì:

A = (n - 1)(n + 1) = (3k + 1 - 1)(3k + 1 + 1) = 3k(3k + 2) \(⋮\) 3

- Nếu n = 3k + 2 thì:

A = (n - 1)(n + 1) = (3k + 2 - 1)(3k + 2 + 1) = (3k + 1)(3k + 3) = 3(3k + 1)(k + 1) \(⋮\) 3

Từ hai trường hợp trên ta có A \(⋮\) 3 (2)

Mà (8,3) = 1 (3)

Từ (1),(2),(3) => \(A⋮24\)

Bình luận (0)
NH
Xem chi tiết
AH
25 tháng 2 2023 lúc 23:48

Lời giải:
a. 

$2n^2+n-6=n(2n+1)-6\vdots 2n+1$

$\Rightarrow 6\vdots 2n+1$

$\Rightarrow 2n+1$ là ước của $6$

Mà $2n+1$ lẻ nên $2n+1\in\left\{\pm 1; \pm 3\right\}$

$\Rightarrow n\in\left\{0; -1; 1; -2\right\}$

b.

Vì $p$ là số nguyên tố lớn hơn 3 nên $p=3k+1$ hoặc $p=3k+2$

Với $p=3k+1$ thì $p^2-1=(p-1)(p+1)=3k(3k+2)\vdots 3$

Với $p=3k+2$ thì $p^2-1=(p-1)(p+1)=(3k+1)(3k+3)=3(3k+1)(k+1)\vdots 3$

Suy ra $p^2-1$ luôn chia hết cho $3$ (*)

Mặt khác:

$p$ lẻ nên $p=2k+1$. Khi đó: $p^2-1=(p-1)(p+1)=2k(2k+2)$

$=4k(k+1)\vdots 8$ (**) do $k(k+1)\vdots 2$ (tích 2 số nguyên liên tiếp)

Từ (*) ; (**) suy ra $p^2-1\vdots (3.8)$ hay $p^2-1\vdots 24$.

Bình luận (0)
HN
Xem chi tiết
HT
24 tháng 6 2015 lúc 16:06

Ta có ( a2-1)=(a+1)(a-1)

* Vì a lớn hơn 3 nên a là số lẻ, do đó (a2-1) chia hết cho 24 là tích của 2 số tự nhiên chẵn liên tiếp

\(\Rightarrow\) chia hết cho 8    (1)

* Trong 3 số tự nhiên liên tiếp thì tồn tại 1 số chia hết cho 3 nên tích 3 số tự nhiên liên tiếp chia hết cho 3 hay ( a+1) a(a-1) chia hết cho 3 , do a là số nguyên tố lớn hơn 3 nên a không thể chia hết cho 3. Do đó (a2-1) chia hết cho 24 \(\Rightarrow\) (a+1)(a-1) chia hết cho 2     (2).

Từ (1) và (2) \(\Rightarrow\) chia hết cho 24 . (đpcm)

 

Bình luận (0)
CV
Xem chi tiết
NP
1 tháng 10 2016 lúc 22:31

ngu quá có thế cũng không làm được

Bình luận (0)
KK
9 tháng 11 2016 lúc 21:07

Dot eo chui noi tu lam di

nho k nha!

thang dot cung biet lam bai nay

Bình luận (0)
NT
Xem chi tiết
NV
Xem chi tiết
TD
7 tháng 11 2015 lúc 13:01

câu hỏi tương tự nhé !!!

Bình luận (0)
H24
7 tháng 11 2015 lúc 13:04

Câu hỏi tương tự đâu có 

Bình luận (0)
LC
7 tháng 11 2015 lúc 13:09

Ta thấy: a2-1=(a-1).(a+1)

Vì p là số nguyên tố lớn hơn 3

=>p=2k+1

=>(a-1).(a+1)=(2k+1-1).(2k+1+1)=2k.(2k+2)

=2k.2.(k+1)

=4.k.(k+1)

Vì k và k+1 là 2 số tự nhiên liên tiếp

=>k.(k+1) chia hết cho 2

=>4.(k).(k+1) chia hết cho 8

=>a2-1 chia hết cho 8(1)

Lại có:

Vì a là số nguyên tố lớn hơn 3

=>a không chia hết cho 3

=>a2 chia 3 dư 1

=>a2-1 chia hết cho 3(2)

Từ (1) và (2) ta thây:

a2-1 chia hết cho 8 và 3

mà (8,3)=1

=>a2-1 chia hết cho 8.3

=>a2-1 chia hết cho 24

Vậy a2-1 chia hết cho 24

Bình luận (0)
NB
Xem chi tiết
NB
10 tháng 1 2024 lúc 7:48

Cảm ơn cô

Bình luận (0)
NH
10 tháng 1 2024 lúc 7:51

Bài 1:

Vì p là số nguyên tố lớn hơn 3 nên p là số lẻ

vậy p + 1 và p -  1 là hai số chẵn.

Mà p + 1 - (p - 1) = 2 nên p + 1 và p - 1 là hai số chẵn liên tiếp.

đặt p - 1 = 2k thì p + 1 = 2k + 2 (k \(\in\) N*)

A = (p + 1).(p - 1) = (2k + 2).2k = 2.(k + 1).2k = 4.k.(k +1) 

Vì k và k + 1 là hai số tự nhiên liên tiếp nên chắc chẵn phải có một số chia hết cho 2.

⇒ 4.k.(k + 1) ⋮ 8 

⇒ A = (p + 1).(p - 1) ⋮ 8 (1)

Vì p là số nguyên tố lớn hơn 3 nên p có dạng:

   p = 3k + 1; hoặc p = 3k + 2

Xét trường hợp p = 3k + 1 ta có:

  p - 1 = 3k + 1  - 1  = 3k ⋮ 3

⇒ A = (p + 1).(p - 1) ⋮ 3  (2)

Từ (1) và (2) ta có:

A ⋮ 3; 8  ⇒ A \(\in\) BC(3; 8)

3 = 3; 8 = 23; ⇒ BCNN(3; 8) = 23.3 = 24

⇒ A \(\in\) B(24) ⇒ A ⋮ 24 (*)

Xét trường hợp p = 3k + 2 ta có

p + 1 = 3k + 2 + 1  = 3k + 3 = 3.(k + 1) ⋮ 3 (3)

Từ (1) và (3) ta có: 

A = (p + 1).(p - 1) ⋮ 3; 8 ⇒ A \(\in\) BC(3; 8)

3 = 3; 8 = 23 ⇒ BCNN(3; 8) = 23.3 = 24 

⇒ A \(\in\) BC(24) ⇒ A \(⋮\) 24 (**)

Kết hợp (*) và(**) ta có

\(⋮\) 24 (đpcm)

 

 

  

 

 

Bình luận (0)
NH
10 tháng 1 2024 lúc 8:12

Bài 2:

P = 10p + 1 và p là số nguyên tố lớn hơn 3 chứng minh 5p + 1 là hợp số

Ta có vì p là số nguyên tố lớn hơn 3 nên p là số lẻ

⇒ p = 2k + 1 (k \(\in\) N*)

ta có: \(\left\{{}\begin{matrix}p=2k+1\\10p+1=10.\left(2k+1\right)+1\end{matrix}\right.\)

⇒ \(\left\{{}\begin{matrix}5p=5.\left(2k+1\right)\\10p+1=20k+11\end{matrix}\right.\)

\(\left\{{}\begin{matrix}5p=10k+5\\10p+1=20k+11\end{matrix}\right.\)

⇒ 10p + 1 - 5p =  20k + 11 - (10k + 5)

⇒ 5p + 1 = 20k + 11  - 10k - 5

⇒ 5p + 1  = 10k + 6 

⇒ 5p + 1  = 2.(5k + 3)

⇒ 5p + 1 ⋮ 1; 1; (5k + 3) 

⇒ 5p + 1 là hợp số (đpcm)

 

 

Bình luận (0)
NL
Xem chi tiết
AH
14 tháng 1 2017 lúc 0:07

Lời giải:

Bài 1)

Nếu \(p^2-1\in\mathbb{P}\Rightarrow (p-1)(p+1)\in\mathbb{P}\)

Khi đó trong hai thừa số $p-1$ hoặc $p+1$ phải có một thừa số có giá trị bằng $1$, số còn lại là số nguyên tố. Vì $p-1<p+1$ nên \(p-1=1\Rightarrow p=2 \in\mathbb{P} \Rightarrow p+1=3\in\mathbb{P}(\text{thỏa mãn})\)

Khi đó \(8p^2+1=33\) là hợp số. Do đó ta có đpcm.

P/s: Hẳn là bạn chép nhầm đề bài khi thêm dữ kiện $p>3$. Với $p>3$ thì $p^2-1$ luôn là hợp số bạn nhé.

Bình luận (0)
AH
14 tháng 1 2017 lúc 0:48

Câu 2:

a) Câu này hoàn toàn dựa vào tính chất của số chính phương

Ta biết rằng số chính phương khi chia $3$ có dư là $0$ hoặc $1$. Mà \(p,q\in\mathbb{P}>3\Rightarrow \) $p,q$ không chia hết cho $3$. Do đó:

\(\left\{\begin{matrix} p^2\equiv 1\pmod 3\\ q^2\equiv 1\pmod 3\end{matrix}\right.\Rightarrow p^2-q^2\equiv 0\pmod 3\Leftrightarrow p^2-q^2\vdots3(1)\)

Mặt khác, vì số chính phương lẻ chia cho $8$ luôn có dư là $1$ nên

\(p^2\equiv 1\equiv q^2\pmod 8\Rightarrow p^2-q^2\equiv 0\pmod 8\Leftrightarrow p^2-q^2\vdots 8\)$(2)$

Từ $(1)$, $(2)$ kết hợp với $(3,8)=1$ suy ra \(p^2-q^2\vdots 24\)

b) Vì \(a,a+k\in\mathbb{P}>3\) nên $a,a+k$ phải lẻ. Do đó $k$ phải chẵn \(\Rightarrow k\vdots 2\) $(1)$

Mặt khác, từ điều kiện đề bài suy ra $a$ không chia hết cho $3$. Do đó $a$ chia $3$ dư $1$ hoặc $2$. Nếu $k$ cũng chia $3$ dư $1$ hoặc $2$ ( $k$ không chia hết cho $3$) thì luôn tồn tại một trong hai số $a+k$ hoặc $a+2k$ chia hết cho $3$ - vô lý vì $a+k,a+2k\in\mathbb{P}>3$

Do đó $k\vdots 3$ $(2)$

Từ $(1)$ và $(2)$ kết hợp $(2,3)=1$ suy ra $k\vdots 6$ (đpcm)

Bình luận (0)