Những câu hỏi liên quan
NT
Xem chi tiết
DL
Xem chi tiết
DH
7 tháng 10 2021 lúc 8:53

A) \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt,c=dt\)

\(\frac{a}{a+b}=\frac{bt}{bt+b}=\frac{t}{t+1},\frac{c}{c+d}=\frac{dt}{dt+d}=\frac{t}{t+1}\)

suy ra đpcm. 

\(\frac{a-b}{c-d}=\frac{bt-b}{dt-d}=\frac{b}{d},\frac{a+b}{c+d}=\frac{bt+b}{dt+d}=\frac{b}{d}\)

suy ra đpcm. 

B) \(\frac{a+3c}{b+3d}=\frac{a+c}{b+d}=\frac{\left(a+3c\right)-\left(a+c\right)}{\left(b+3d\right)-\left(b+d\right)}=\frac{2c}{2d}=\frac{c}{d}\)

\(\frac{a+3c}{b+3d}=\frac{a+c}{b+d}=\frac{\left(a+3c\right)-3\left(a+c\right)}{\left(b+3d\right)-3\left(b+d\right)}=\frac{-2a}{-2b}=\frac{a}{b}\)

suy ra đpcm. 

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết
PH
Xem chi tiết
H24
Xem chi tiết
NL
Xem chi tiết
NT
29 tháng 6 2016 lúc 22:04

a) \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)

<=> \(a^2-2a+1+b^2-2b+1+c^2-2c+1=0\)

<=> \(\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)

Tổng 3 số không âm bằng 0 <=> a=b=c=1

b) \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2ac+2bc=3ab+3ac+3bc\)

<=> \(a^2-ab+b^2-bc+c^2-ac=0\)

<=> \(2a^2-2ab+2b^2-2bc+2c^2-2ac=0\)

<=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Tổng 3 số không âm bằng 0 <=> a=b=c

Bình luận (0)
NL
30 tháng 6 2016 lúc 8:46

#NguyễnHoàngTiến ơi cảm ơn bạn đã giúp mình nhưng cho mình hỏi left với right trong bài của bạn có nghĩa là gì vậy hả, mình không hiểu lắm.

Bình luận (1)
BT
Xem chi tiết
MT
22 tháng 11 2018 lúc 19:09

Câu 1 

Ta có : \(\frac{a}{b}=\frac{c}{d}=>\left(\frac{a}{b}+1\right)=\left(\frac{c}{d}+1\right)\left(=\right)\frac{a+b}{b}=\frac{c+d}{d}\)

=> ĐPCM

Câu 2

Ta có \(\frac{a}{b}=\frac{c}{d}=>\frac{b}{a}=\frac{d}{c}=>\left(\frac{b}{a}+1\right)=\left(\frac{d}{c}+1\right)\left(=\right)\frac{b+a}{a}=\frac{d+c}{c}=>\frac{a}{b+a}=\frac{c}{d+c}\)

=> ĐPCM

Câu 3

Bình luận (0)
MT
22 tháng 11 2018 lúc 19:20

Câu 3

Ta có \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(=) (a+b).(c-d)=(a-b).(c+d)(=)ac-ad+bc-bd=ac+ad-bc-bd(=)-ad+bc=ad-bc(=) bc+bc=ad+ad(=)2bc=2ad(=)bc=ad=> \(\frac{a}{b}=\frac{c}{d}\)

=> ĐPCM

Câu 4 

Đặt \(\frac{a}{b}=\frac{c}{d}=k\)

\(=>\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Ta có \(\frac{ac}{bd}=\frac{bk.dk}{bd}=k^2\left(1\right)\)

Lại có \(\frac{a^2+c^2}{b^2+d^2}=\frac{b^2k^2+c^2k^2}{b^2+d^2}=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(2\right)\)

Từ (1) và (2) => ĐPCM

Bình luận (0)
H24
23 tháng 11 2018 lúc 20:05

Mày là thằng anh tuấn lớp 7c trường THCS yên lập đúng ko 

Bình luận (0)
BL
Xem chi tiết
VA
Xem chi tiết
NH
7 tháng 2 2022 lúc 14:10

minh châu oi

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết