cmr với mọi n:2n+1/2n(n+1)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cmr : \(2^{2n}\left(2^{2n+1}-1\right)-1⋮9\) với mọi n thuộc N*
\(\left(4^n-1\right)⋮\left(4-1\right)=3\)
Đặt \(4^n=3m+1\left(m\in N\right)\)
\(\Rightarrow2^{2n}\left(2^{2n+1}-1\right)-1=4^n\left(2.4^n-1\right)\\ =\left(3m+1\right)\left[2\left(3m+1\right)-1\right]-1\\ =\left(3m+1\right)\left(6m+1\right)-1\\ =18m^2+3m+6m+1-1\\ =9\left(2m^2+m\right)⋮9\)
CMR với mọi n thuộc N , n> 0 thì n^4+2n^3+2n^2+2n+1 không phải là số chính phương
CMR với mọi n thuộc Z thì phân số 2n + 1 / 2n(n+1) là phân số tối giản
CMR:\(5^{2n-1}.2^{n+1}+3^{n+1}.2^{2n-1}\)chia hết cho 3 với mọi n
bạn cho đề sai vì khi thuế 1 vào pt trên ko chia hết cho 3 bạn coi đề kĩ lại
CMR :n (2n-3)-2n(n+1) luôn chia hết cho 5 với mọi n €Z
A= n(2n-3)-2n(n+1)
A= 2n2-3n-2n2-2n
A=-5n
vì -5 chia hết cho 5
Nên -5n chia hết cho 5
hay A chia hết cho 5 với n thuộc z
CMR biểu thức A= n(2n-3)-2n(n+1)luôn chia hết cho 5 với mọi n thuộc z
A= n(2n-3)-2n(n+1)
A= 2n2-3n-2n2-2n
A=-5n
vì -5 chia hết cho 5
Nên -5n chia hết cho 5
hay A chia hết cho 5 với n thuộc z
CMR:\(3^{2n+1}+2^{2n+2}⋮7\) với mọi n thuộc N
Cmr: Với mọi số nguyên n thì
A=(2n+1)×(n^2- 3n-1)- 2n^3+1 chia hết cho 5.
mk làm luôn nhá ^^
tá có:A=(2n+1).(n2-3n-1)-2n3+1=\(2n^3-6n^2-2n+n^2-3n-1-2n^3+1.\)
=\(-5n^2-5n\)
Ta thấy:\(-5n⋮5\Rightarrow-5n^2⋮5\)
\(\Rightarrow-5n^2-5n⋮5\)với mọi số nguyên n
\(\Rightarrowđpcm\)
CMR với mọi n thuộc Z thì :2n+1 chia hết cho 2n2-1
Tham khảo:1)CMR với mọi số m,n nguyên thì:a)n^2[(n^2)-1] chia hết cho 12?
A = n²(n²-1)
* vì n² chia 3 dư 0 hoặc 1 nên n² và n²-1 có một số chia hết cho 3
=> n²(n²-1) chia hết cho 3
* n² chia 4 dư 0 hoặc 1 nên n²(n²-1) có một số chia hết cho 4
=> n²(n²-1) chia hết cho 4
vì 3 và 4 là hai số nguyên tố cùng nhau nên A = n²(n²-1) chia hết cho 3.4 = 12