Những câu hỏi liên quan
HC
Xem chi tiết
ND
20 tháng 9 2020 lúc 9:47

Ta có: \(n^2+6n=n\left(n+6\right)\)

Vì SNT chỉ có 2 ước dương duy nhất là 1 và chính nó nên ta xét các TH sau:

+ Nếu: \(n=1\Rightarrow n+6=7\)

=> \(n^2+6n=7\left(tm\right)\)

+ Nếu: \(n+6=1\Rightarrow n=-5\) (không thỏa mãn vì âm)

Còn nếu xét các TH  khác ta luôn có thể thấy \(n\left(n+6\right)\) là tích 2 STN cách nhau 6 đơn vị

=> không thể là SNT

Vậy n = 1

Bình luận (0)
 Khách vãng lai đã xóa
LU
Xem chi tiết
TL
18 tháng 9 2015 lúc 16:36

n2 + 6n = n.(n+6) 

n2 + 6n là số nguyên tố nên chỉ có 2 ước là 1 và chính nó => n = 1 hoặc n + 6 = 1

n + 6 = 1 mà n là số tự nhiên nên không có n thỏa mãn

Vậy n = 1 

Bình luận (0)
TP
18 tháng 9 2015 lúc 15:46

n=1

n2+6n khác 1,0  suy ra n.n+6n chia hết cho n

vậy n = 1

n khác 0 vì nếu n.n +6n= 0.0+6.0=0 ko là số nguyên tố

Bình luận (0)
H24
Xem chi tiết
NT
Xem chi tiết
HH
Xem chi tiết
AN
20 tháng 11 2016 lúc 10:58

Đặt \(\hept{\begin{cases}A=3^{3m^2+6n-61}+4\\t=3m^2+6n-61\end{cases}}\)

Ta có t chia cho 3 dư 2 nên t = 3k + 2

\(A=3^{3k+2}+4=9.27^k+4\)

Ta có 27 chia 13 dư 1 nên \(9.27^k\)chia cho 13 dư 9

\(\Rightarrow9.27^k+4\) chia hết cho 13

Vậy A = 13

=> k = 0 => t = 2

=> 3m2 + 6n - 61 = 2

<=> m2 + 2n = 21

Ta nhận xét là m2 là bình phương của số lẻ nhỏ hơn 21

=> m2 = (1, 9)

=> m = (1; 3)

=> n = (10; 6)

Bình luận (0)
TD
Xem chi tiết
LB
2 tháng 11 2015 lúc 12:48

n2 + 6n = n(n + 6) chia hết n

Mà n2 + 6n phải là số nguyên tố => n = 1

Thử lại: n(n + 6) = 7 nguyên tố

Vậy n = 1

Bình luận (0)
LL
Xem chi tiết
TD
7 tháng 8 2016 lúc 15:17

Giải:

n2+6n là 1 số nguyên tố (đề bài cho)

Nhưng khi đã có 1 thừa số của 1 tích nhỏ( tổng) là 6(khác số nguyên tố)=> không có giá trị cần tìm

=> Không có giá trị n thỏa mãn

Bình luận (0)
NL
Xem chi tiết
H24
Xem chi tiết