Những câu hỏi liên quan
JM
Xem chi tiết
V1
1 tháng 2 2016 lúc 8:51

Giả sử n^2 + 2006 = m^2 (m,n la số nguyên) 
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006 
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên) 
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1) 
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2) 
Từ (1) và (2) suy ra a và b đều là số chẵn 
Suy ra a = 2k , b= 2l ( với k,l là số nguyên) 
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006 
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4) 
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.(đpcm)

Bình luận (0)
ZR
1 tháng 2 2016 lúc 8:46

Đặt n2+2006=a2 (a\(\in\)Z)
=> 2006=a- n = (a - n)(a + n) (1)

Mà (a + n) - (a - n) = 2n chia hết cho 2

=>a + n và a - n có cùng tính chẵn lẻ

+)TH1: a + n và a - n cùng lẻ => (a - n)(a + n) lẻ, trái với (1)

+)TH2: a + n và a - n cùng chẵn => (a - n)(a + n) chia hết cho 4, trái với (1)

Vậy không có n thỏa mãn n2 +2006 là số chính phương

Bình luận (0)
AA
Xem chi tiết
CU
24 tháng 1 2016 lúc 21:31

ko có số n nào thỏa mãn

Bình luận (0)
HD
24 tháng 1 2016 lúc 21:31

n không thuộc bất cứ giá trị nào

Bình luận (0)
FT
24 tháng 1 2016 lúc 21:32

n thuộc rỗng    

Bình luận (0)
NU
Xem chi tiết
TN
15 tháng 5 2016 lúc 16:09

a) đề thiếu

Bình luận (0)
YS
15 tháng 5 2016 lúc 16:09

Đặt n2 + 2006 = a2 (a thuộc Z)

=> 2006 = a2 - n2 = (a - n)(a + n) (1)

Mà (a + n) - (a - n) = 2n chia hết cho 2

=>a + n và a - n có cùng tính chẵn lẻ

+)TH1: a + n và a - n cùng lẻ => (a - n)(a + n) lẻ, trái với (1)

+)TH2: a + n và a - n cùng chẵn => (a - n)(a + n) chia hết cho 4, trái với (1)

Vậy không có n thỏa mãn n2+2006 là số chính phương

b)Vì n là số nguyên tố lớn hơn 3 => n không chia hết cho 3

=> n = 3k + 1 hoặc n = 3k + 2 (k$$N*)

+) n = 3k + 1 thì n2 + 2006 = (3k + 1)2 + 2006 = 9k2 + 6k + 2007 chia hết cho 3 và lớn hơn 3

=> n2 + 2006 là hợp số 

+) n = 3k + 2 thì n2 + 2006 = (3k + 2)2 + 2006 = 9k2 + 12k + 2010 chia hết cho 3 và lớn hơn 3

=> n2 + 2006 là hợp số

Vậy n2 + 2006 là hợp số

Bình luận (0)
TN
15 tháng 5 2016 lúc 16:10

yamamoto takeshi đề thiếu mà you vẫn làm đc hả 

Bình luận (0)
HH
Xem chi tiết
HH
21 tháng 5 2016 lúc 8:54

a) Giả sử n2

(a+n) = 2006 (*) 

+ Thấy : Nếu a,n khác tính chất chẵn lẻ thì vế trái của (*) là số lẻ nên không thỏa mãn (*) 

+ Nếu a,n cùng tính chẵn hoặc lẻ thì (a-n)2 và (a+n) 2 nên vế trái chia hết cho 4 và vế phải không chia

hết cho 4 nên không thỏa mãn (*) 

Vậy không tồn tại n để n2

b) n là số nguyên tố > 3 nên không chia hết cho 3. Vậy n2

+ 2006 = 3m+2007= 3( m+669) chia hết cho 3.

Vậy n2

+ 2006 là hợp số.

+ 2006 là số chính phương khi đó ta đặt n2

+ 2006 là số chính phương. 

Bình luận (0)
VH
21 tháng 5 2016 lúc 8:58

Đã biết câu trả lời mà còn hỏi nữa con rảnh ruồi kia -__-

Bình luận (0)
OT
21 tháng 5 2016 lúc 9:00

a)Giả sử n^2 + 2006 = m^2 (m,n la số nguyên) 
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006 
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên) 
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1) 
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2) 
Từ (1) và (2) suy ra a và b đều là số chẵn 
Suy ra a = 2k , b= 2l ( với k,l là số nguyên) 
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006 
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4) 
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.

Bình luận (0)
NH
Xem chi tiết
VT
19 tháng 1 2016 lúc 18:48

a)Giả sử n^2 + 2006 = m^2 (m,n la số nguyên) 
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006 
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên) 
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1) 
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2) 
Từ (1) và (2) suy ra a và b đều là số chẵn 
Suy ra a = 2k , b= 2l ( với k,l là số nguyên) 
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006 
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4) 
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.(đpcm)

Bình luận (0)
MK
Xem chi tiết
TL
17 tháng 11 2015 lúc 12:15

Tham khảo câu hỏi tương tự nhé bạn .

Tick tớ đc chứ 

Bình luận (0)
PP
Xem chi tiết
NQ
Xem chi tiết
L2

a) Đặt n2+2006=a2(a∈Z)n2+2006=a2(a∈Z)

⇒2006=a2−n2=(a−n)(a+n)(1)⇒2006=a2−n2=(a−n)(a+n)(1)

Mà (a+n)-(a-n)=2n⋮⋮2

=> a+n và a-n cg tính chẵn, lẻ

TH1: a+n; a-n cg lẻ => (a+n)(a-n) lẻ trái với (1)

TH2: a+n; a-n cg chẵn => (a+n)(a-n) chia hết cho 4, trái với (1)

Vậy không tìm đc n để n2+2006n2+2006 là số chính phương

Bình luận (0)
 Khách vãng lai đã xóa
NQ
21 tháng 2 2020 lúc 10:51

cam on nha

Bình luận (0)
 Khách vãng lai đã xóa
HC
Xem chi tiết