cho abc khác 0 và a+b-c/c=b+c-a/a=c+a-b/b tính giá trị biểu thức P=(1+b/a)(1+c/b)(1+a/c)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho a khác b khác c khác 0 và a + 1/a = b + 1/b = c + 1/c . Tính giá trị biểu thức P = abc
Cho ABC khác 0 và a+b+c = 0. Tính giá trị của biểu thức A = (1+a/b) (1+b/c) (1+c/a)
Bạn ơi! ABC khác 0 thì làm sao ạ+b+c=0 được bạn
Bài làm :
Vì :
\(a+b+c=0\)
\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\a+c=-b\end{cases}}\)
Ta có :
\(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
\(\Rightarrow A=\frac{b+a}{b}.\frac{c+b}{c}.\frac{a+c}{a}\)
\(\Rightarrow A=\left(-\frac{c}{b}\right).\left(\frac{-a}{c}\right).\left(\frac{-b}{a}\right)\)
\(\Rightarrow A=-\frac{abc}{abc}\)
\(\Rightarrow A=-1\)
Vậy A=-1
Cho abc khác 0 và a+b+c = 0. Tính giá trị của biểu thức A = (1+a/b) (1+b/c) (1+c/a)
Ta có : \(a+b+c=0\)
\(\Rightarrow a+b=-c;b+c=-a;a+c=-b\)
Mà \(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
\(\Rightarrow A=\frac{b+a}{b}.\frac{c+b}{c}.\frac{a+c}{a}\)
\(\Rightarrow A=-\frac{c}{b}.\frac{-a}{c}.\frac{-b}{a}\)
\(\Rightarrow A=-\frac{abc}{abc}\)
\(\Rightarrow A=-1\)
Vậy \(A=-1\)
Chúc bạn học tốt !!!
A=a+b/b.b+c/c.c+a/a
mà a+b+c =0
=> a+b=-c ; b+c=-a ; c+a=-b
thay vào A được:A= -c/b.-a/c.-b/a=-abc/abc=-1
Ta có:
a+b+c=0
=> a+b=-c, a+c=-b, c+b=-a
Mà theo đề bài thì A= \(\left(1+\frac{a}{b}\right).\left(1+\frac{b}{c}\right).\left(1+\frac{c}{a}\right)\)
<=> A= \(\frac{b+a}{b}.\frac{c+b}{c}.\frac{a+c}{a}\)
<=> A= \(\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}\)
<=> A= \(\frac{-abc}{abc}\)
<=> A= -1
a) Cho a,b,c đều khác nhau đôi một và \(\frac{a+b}{c}=\frac{b+a}{a}=\frac{c+a}{b}\)
Tính giá trị của biểu thức P=\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
b) Cho abc khác 0 và đôi một khác nhau thỏa mãn a+b+c=0
Tính giá trị biểu thức \(\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)\left(\frac{b-a}{a}+\frac{c-a}{b}+\frac{a-b}{c}\right)\)
a) Ta có : \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\Leftrightarrow\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{c+a}{b}+1\)
\(\Rightarrow\frac{a+b+c}{a}=\frac{a+b+c}{b}=\frac{a+b+c}{c}\)
TH1: Nếu a + b + c = 0 \(\Rightarrow P=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=\frac{-\left(abc\right)}{abc}=-1\)TH2 : Nếu \(a+b+c\ne0\) \(\Rightarrow a=b=c\)\(\Rightarrow P=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)
b) Đề bài sai ^^
Cho a,b,c là 3 số thực khác 0, thỏa mãn a+b-c/c = b+c-a/a =c+a-b/b và a+b+c khác 0.
hãy tính giá trị biểu thức B = (1+b/a). (1+a/c). (1+c/b)
\(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
\(\Rightarrow\frac{a+b-c}{c}+1=\frac{b+c-a}{a}+1=\frac{c+a-b}{b}+1\)
\(\Rightarrow\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\)
+)Nếu a+b+c=0\(\Rightarrow a+b=-c;b+c=-a;c+a=-b\)
\(\Rightarrow B=\frac{a+b}{a}.\frac{c+a}{c}.\frac{b+c}{b}=\frac{-c}{a}.\frac{-b}{c}.\frac{-a}{b}=\frac{-\left(abc\right)}{abc}=-1\)
Nếu \(a+b+ c\ne0\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\Rightarrow a+b=2c\)
\(b+ c=2a\)
\(c+a=2b\)
\(\Rightarrow B=\frac{2c}{a}.\frac{2b}{c}.\frac{2a}{b}=2.2.2=8\)
a+b-c/c=b+c-a/a=c+a-b/b
=>a+b-1=b+c-1=c+a-1
=>a+b=b+c=c+a
Vì a+b=b+c
=>a=b+c-b
=>a=c
Vì b+c=c+a
=>b=c+a-c
=>b=a
Mà a=c
=>a=b=c
Ta có:B=(1+b/a).(1+a/c).(1+c/b)
=>B=(1+b/b).(1+a/a).(1+c/c)
=>B=(1+1).(1+1).(1+1)
=>B=2.2.2
=>B=8
Vậy B=8
Hok tốt!
Cho a, b, c khác 0 và a + b + c=0
Tính giá trị biểu thức A= (1 + a/b)(1 + c/a + b/c + b/a)
Đang cần gấp ạ
. Cho a, b, c là 3 số thực khác 0, thỏa mãn điều kiện: a + b ≠ - c và a b c b c a c a b c a b . Tính giá trị biểu thức: P = 1 1 1 b a c a c b
Cho 3 số a,b,c khác 0 và a+b-2023c/c = b+c-2023a/a = c+a-2023b/b Tính giá trị của biểu thức M = (1+b/a)(1+c/b)(1+a/c) Giúp mik với
Cho a;b;c khác 0 thỏa a+b-c/c = b+c-a/a = c+a-b/b
Tính giá trị biểu thức P= (1-b/a).(1+a/c).(1+c/d)
Cho ba số thực a,b,c khác 0 thỏa mãn a+b+c=1 và 1/a+1/b+1/c =1. Tính giá trị của biểu thức a^2018+b^2018+c^2018