Những câu hỏi liên quan
H24
Xem chi tiết
TT
Xem chi tiết
H24
Xem chi tiết
H24
10 tháng 8 2021 lúc 17:20

giúp mik ik mn

Bình luận (0)
HT
Xem chi tiết
PM
5 tháng 4 2020 lúc 16:52

A B C M D E

a) 

Xét tam giác AMB có: MD là pg góc AMB

=>  \(\frac{AD}{BD}=\frac{AM}{BM}\)        ( 1 )

Xét tam giác AMC có: MD là pg góc AMC

=> \(\frac{AE}{CE}=\frac{AM}{CM}\)

Mà BM = CM

=> \(\frac{AE}{CE}=\frac{AM}{BM}\)     ( 2 )

* Từ ( 1 ) , ( 2 ) => \(\frac{AD}{BD}=\frac{AE}{CE}\)

=> DE // BC. ( định lí Ta-lét đảo )

Vậy DE // BC.

b)

Ta có: BM = CM = \(\frac{1}{2}\)BC = \(\frac{1}{2}\)x 6 = 3 (cm)

Ta có: \(\frac{AD}{BD}=\frac{AM}{BM}\)

=> \(\frac{AD}{AM}=\frac{BD}{BM}=\frac{AD+BD}{AM+BM}=\frac{AB}{AM+BM}\)

=> \(\frac{AD}{5}=\frac{AB}{5+3}=\frac{AB}{8}\)

=> \(\frac{AD}{AB}=\frac{5}{8}\)

Xét tam giác ABC có: DE // BC

=> \(\frac{DE}{BC}=\frac{AD}{AB}\) ( hệ quả định lí Ta-lét )

=> \(\frac{DE}{6}=\frac{5}{8}\)

=> DE = 3,75 ( cm ).

Vậy DE = 3,75 cm.

Bình luận (0)
 Khách vãng lai đã xóa
QT
Xem chi tiết
HH
29 tháng 4 2018 lúc 0:30

1/

a/ Ta có AB < BC (5cm < 6cm)

=> \(\widehat{ACB}< \widehat{A}\)(quan hệ giữa góc và cạnh đối diện trong tam giác)

Mà \(\widehat{ACB}=\widehat{ABC}\)(\(\Delta ABC\)cân tại A)

=> \(\widehat{ABC}< \widehat{A}\)

b/ \(\Delta ADB\)và \(\Delta ADC\)có: AB = AC (\(\Delta ABC\)cân tại A)

\(\widehat{BAD}=\widehat{DAC}\)(AD là tia phân giác \(\widehat{BAC}\))

Cạnh AD chung

=> \(\Delta ADB\)\(\Delta ADC\)(c. g. c) (đpcm)

c/ Ta có \(\Delta ABC\)cân tại A

=> Đường cao AD cũng là đường trung tuyến của \(\Delta ABC\)

và G là giao điểm của hai đường trung tuyến AD và BE của \(\Delta ABC\)

=> CF là đường trung tuyến thứ ba của \(\Delta ABC\)

=> F là trung điểm AB (đpcm)

d/ Ta có G là giao điểm của ba đường trung tuyến AD, BE và CF của \(\Delta ABC\)

=> G là trọng tâm \(\Delta ABC\)

và D là trung điểm BC (vì AD là đường trung tuyến của \(\Delta ABC\))

=> \(BD=DC=\frac{BC}{2}=\frac{6}{2}=3\)(cm)

Áp dụng định lý Pitago vào \(\Delta ADB\)vuông tại D, ta có: AD = 4cm (tự tính)

=> \(AG=\frac{2}{3}AD=\frac{2}{3}.4=\frac{8}{3}\)(cm)

Áp dụng định lý Pitago vào \(\Delta ADC\)vuông tại D, ta có:

\(BG=\sqrt{BD^2+GD^2}\)

=> \(BG=\sqrt{3^2+\left(\frac{8}{3}\right)^2}\)

=> \(BG=\sqrt{9+\frac{64}{9}}\)

=> \(BG=\sqrt{\frac{145}{9}}\)

=> BG \(\approx\)4, 01 (cm)

Bình luận (0)
MT
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết