Những câu hỏi liên quan
H24
Xem chi tiết
NH
Xem chi tiết
NH
22 tháng 10 2018 lúc 21:56

a/ \(a+b+c=0\)

\(\Leftrightarrow\left(a+b+c\right)^3=0\)

\(\Leftrightarrow\left[\left(a+b\right)+c\right]^3=0\)

\(\Leftrightarrow\left(a+b\right)^3+3\left(a+b\right)^2c+3\left(a+b\right)c^2+c^3=0\)

\(\Leftrightarrow a^3+b^3+c^3+3a^2b+3ab^2+3bc^2+3b^2c+3a^2c+3ac^2+6abc=0\)

\(\Leftrightarrow a^3+b^3+c^3+\left(3a^2b+3ab^2+3abc\right)+\left(3bc^2+3b^2c+3abc\right)+\left(3ac^2+3a^2c+3abc\right)-3abc=0\)

\(\Leftrightarrow a^3+b^3+c^3+3abc\left(a+b+c\right)+3bc\left(a+b+c\right)+3ac\left(a+b+c\right)-3abc=0\)

\(a+b+c=0\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\left(đpcm\right)\)

Bình luận (1)
NH
22 tháng 10 2018 lúc 22:11

b/ \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a^2+b^2+c^2-ab-bc-ac=0\end{matrix}\right.\)

+) Nếu : \(a^2+b^2+c^2-ab-bc-ac=0\)

\(\Leftrightarrow2\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\) \(\Leftrightarrow a=b=c\)

Vậy \(a^3+b^3+c^3=3abc\) \(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)

Bình luận (1)
DX
Xem chi tiết
DT
Xem chi tiết
DX
Xem chi tiết
VT
Xem chi tiết
NC
Xem chi tiết
MD
31 tháng 5 2016 lúc 9:28

Ta có \(a^3+b^3+c^3-3abc=\left(a+b\right)^3-3a^2b-3ab^2+c^3-3abc\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(\left(a+b\right)^2-c\left(a+b\right)+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0.\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

Bình luận (0)
HN
31 tháng 5 2016 lúc 9:16

Từ a + b + c = 0 suy ra được : \(c=-\left(a+b\right)\Rightarrow c^3=-\left[a^3+b^3+3ab\left(a+b\right)\right]\Rightarrow a^3+b^3+c^3=-3ab\left(-c\right)=3abc\)

Vậy : \(a^3+b^3+c^3-3abc=0\)

Bình luận (0)
BP
Xem chi tiết
NH
Xem chi tiết
KR
22 tháng 6 2017 lúc 10:04

Ta có :

a3 + b3 + c3 = 3abc

=> a3 + b3 + c3 - 3abc = 0

Đưa về hằng đẳng thức phụ : a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ca)

Vô link này sẽ có thêm vài hệ thức của hằng nữa : Bảy hằng đẳng thức đáng nhớ – Wikipedia tiếng Việt

=> a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ca) = 0

=> \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\left(2\right)\end{cases}}\)

Từ (2) ta có :

a2 + b2 + c2 - ab - bc - ca = 0

<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca = 0

<=> (a2 - 2ab + b2) + (b2 - 2ab + c2) + (c2 - 2ca + a2) = 0

<=> (a - b)2 + (b - c)2 + (c - a)2 = 0

<=> \(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Rightarrow a=b=c\)

Bình luận (0)