tìm n thuộc z để :
n^2-5 chia hết cho n+1
1. Tìm n thuộc z để n3 + n2- n +5 chia hết cho n+2
2. Tìm n thuộc z để n3 + 3n -5 chia hết cho n2 +2
1 tìm n thuộc z biết
a, 7 chia hết n-2
2 tìm n thuộc z biết
a, 2n+5 chia hết cho n-1
b, n+3 chia hết cho 2n -1
3 tìm n thuộc z biết
a, 2n-5 chia hết cho n+1 và n+1 chia hết cho 2n+5
b, 3n+2 chia hết cho n-2 và n-2 chia hết cho 3n+2
tìm n thuộc Z để n^2+5 chia hết cho n+1
Ta có: n2+5 chia hết cho n+1
n.n+5 chia hết cho n+1
n.n+1+4 chia hết cho n+1
4n chia hết cho n+1
4n chia hết cho n và 4n chia hết cho 1.
Mà 4n chia n =4, 4n chia 1=4n
Suy ra n=4n
Bằng phép thử trực tiếp, ta tìm được n=0 thỏa ,anh điều kiên trên.
Vậy n=0
1. Tìm n thuộc Z để giá trị của biểu thức A= n^3 + 2n^2 - 3n + 2 chia hết cho giá trị của biểu thức B= n^2 - n
2.a. Tìm n thuộc N để n^5 + 1 chia hết cho n^3 + 1
b. Giải bài toán trên nếu n thuộc Z
3. Tìm số nguyên n sao cho:
a. n^2 + 2n - 4 chia hết cho 11
b. 2n^3 + n^2 + 7n + 1 chia hết cho 2n - 1
c.n^4 - 2n^3 + 2n^2 - 2n + 1 chia hết cho n^4 - 1
d. n^3 - n^2 + 2n + 7 chia hết cho n^2 + 1
4. Tìm số nguyên n để:
a. n^3 - 2 chia hết cho n - 2
b. n^3 - 3n^2 - 3n - 1 chia hết cho n^2 + n + 1
c. 5^n - 2^n chia hết cho 63
1) Cho A= (3n - 13)/(n - 1) (n thuộc Z )
a) Tìm n nguyên để A nguyên.
b) Tìm n nguyên để A là phân số tối giản.
2. Cho a,b thuộc N. Chứng minh rằng: 4a + b chia hết cho 5 và a + 4b chia hết cho 5
Bài 1 :
Tìm N thuộc Z để giá trị biểu thức n3 + n2 - n + 5 chia hết cho giá trị biểu thức n + 2
Tìm N thuộc Z để giá trị biểu thức n3 + 3n - 5 chia hết cho giá trị biểu thức n2 + 2 .
Tìm n thuộc Z để:
1) (n+1013) chia hết cho n
2) (11-7n) chia hết cho n
3) (n+5) chia hết cho (n+4)
Tìm n thuộc Z để:
n^2 + 5 chia hết cho n + 1
bấm vào đúng 0 sẽ ra kết quả, mình làm bài này rồi dễ lắm bạn ạ
n2 + 5 chia hết cho n + 1
Mà n + 1 chia hết cho n + 1 => n(n + 1)chia hết cho n + 1
=> n2 + 5 - n2 - n chia hết cho n + 1
=> 5 - n chia hết cho n + 1
=> 5 - n - n - 1 chia hết cho n + 1
=> 4 chia hết cho n + 1
=>n + 1 thuôc {1; -1; 2; -2; 4; -4}
=> n thuộc {0; -2; 1; -3; 3; -5}
Tìm n thuộc Z để:
n mũ 2 + 5 chia hết cho n + 1
Ta có : n2 + 5 = n(n + 1) - n + 5 = n(n + 1) - (n + 1) + 6 = (n - 1)(n + 1) + 6
Mà n2 + 5 \(⋮\)n + 1
<=> (n - 1)(n + 1) + 6 \(⋮\)n + 1
<=> 6 \(⋮\)n + 1
<=> n + 1 \(\in\)Ư(6) = {1; -1; 2; -2; 3; -3; 6; -6}
Lập bảng :
n + 1 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
n | 0 | -2 | 1 | -3 | 2 | -4 | 5 | -7 |
Vậy ...
Ta có : \(n^2+5⋮n+1\)
\(\Rightarrow n^2+n+5-n⋮n+1\)
\(\Rightarrow n.\left(n+1\right)+5-n⋮n+1\)
\(\Rightarrow5-n⋮n+1\)
\(\Rightarrow n-5⋮n+1\)
\(\Rightarrow6⋮n+1\)
Ta có bẳng sau
n+1 | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
n | -7 | -4 | -3 | -2 | 0 | 1 | 2 | 5 |
mấy bạn cho mình hỏi
tìm n thuộc z để
n+1 chia hết n^2-3
n+3 chia hết n^2-5