Tìm số tự nhiên a để 14a+1 chia hết cho 2a+4
Tìm số nguyên a để 4a3+14a2+6a+12 chia hết cho 2a+1
Tìm số tự nhiên a lớn hơn 1 để 2a+8 chia hết cho a
Tìm số nguyên a sao cho 4a3+14a2+6a+12 chia hết cho 2a+1
tìm số tự nhiên a biết :
a) a-4 chia hết cho a-1
b) 2a chia hết cho a+1
c) 6a + 7 chia hết cho 3a +2
d) 12a +5 chia hết cho 3a +2
bạn nào trả lời nhanh mình cho 5 sao
tìm số nguyên a biết 4a3 + 14a2 + 6a + 12 chia hết cho 1 +2a
tìm số nguyên a biết 4a3 + 14a2 + 6a + 12 chia hết cho 1 +2a
Ta xét : \(\frac{4a^3+14a^2+6a+12}{1+2a}=\frac{2a^2\left(2a+1\right)+6a\left(2a+1\right)+12}{1+2a}=2a^2+6a+\frac{12}{1+2a}\)
Để \(\left(4a^3+14a^2+6a+12\right)⋮\left(1+2a\right)\) thì \(1+2a\inƯ\left(12\right)\)
Bạn tự liệt kê
Ta có
\(4a^3+14a^2+6a+12\)
\(=a\left(4a^2+14a+6\right)+12\)
\(=a\left[\left(4a^2+2a\right)+\left(12a+6\right)\right]+12\)
\(=a\left[2a\left(2a+1\right)+6\left(2a+1\right)\right]+12\)
\(=a\left(2a+1\right)\left(2a+6\right)+12\)
Vì \(4a^3+14a^2+6a+12\) chia hết cho 2a+1
\(=>a\left(2a+1\right)\left(2a+6\right)+12\) chia hết cho 2a+1
Mà a(2a+1)(2a+6) chia hết cho 2a+1
=> 12 chia hết cho 2a+1
=> \(2a+1\inƯ_{12}\)
Mặt khác 2a+1 lẻ
=> \(2a+1\in\left\{1;3;-1;-3\right\}\)
=> \(a\in\left\{0;1;-1;-2\right\}\)
Vậy \(a\in\left\{0;1;-1;-2\right\}\)
Tìm a biết a thuộc Z sao cho
a,2a^2+4a+5 chia hết a+2
b,4a^3+14a^2+6a+12 chia hết 2a+1
Ta có:
2a2+4a+5
=2a.(a+2)+5
Vì 2a.(a+2) chia hết cho a+2
=>5 chia hết cho a+2
=>a+2 thuộc Ư(5)
=>tự lm
a, Tìm số tự nhiên n lớn nhất có ba chữ số, sao cho chia nó cho 3, cho 4,cho 5, cho 6, cho 7 ta được các số dư theo thứ tự là:1;2;3;4;5.
b, Tìm số nguyên a để 2a+1 chia hết cho a—5
Bài 1: Cho M = 48+20+a với a là số tự nhiên
Tìm a để M chia hết cho 4, không chia hết cho 4
Bài 2: Tích A =1.2.3.4.5....20 có chia hết cho 400 không
Bài 3:
a, Tìm số tự nhiên n để n+10 chia hết cho n+1
b, Tìm số tự nhiên n để3n +40 chia hết cho n+2
Hông biết kho và nhiều thế
\(B1:\)-Ta xát tổng của M
48 chia hết cho 4
20 chia hết cho 4
Ta áp dụng công thức a chia hết cho d;b chia hết cho d;c chia hết cho d
=>a+b+c chia hết cho d
=>Để m chia hết cho 4 thì a cũng phải chia hết cho 4
Để M không chia hết cho 4 thì a phải không chia hết cho 4
\(B2:\)1x2x3x4x5x...x20
=(5x20x4)x1x2x3x...
=400x1x2x3x...
Ta có 400 chia hết cho 400
Ta áp dụng công thức
a chia hết cho b thì a nhân với bất kì số nào cũng chia hết cho b
=>A chia hết cho 400
\(B3:\)Ta có n+10 chia hết cho n+1;n+1 chia hết cho n+1
=>(n+10)-(n+1) chia hết cho n+1
a,(n+10)-(n+1)=9
=>9 là bội của n+1
Ư(9)=(1;-1;3;-3;9;-9)
n+1 | 1 | -1 | -3 | 3 | 9 | -9 | |
n | 0 | -2 | -4 | 2 | 8 | -10 |
=.n=(0;-2;-4;2;8;-10