Cho a,b,c,d là các nguyên thỏa mãn \(ab+cd⋮a-c\)
Chứng minh :\(ad+bc⋮a-c\)
cho a,b,c,d là các số nguyên thỏa mãn ab+cd chia hết cho a-c. Chứng minh rằng ad+bc chia hết cho a-c.
Cho a,b,c,d là các số nguyên thỏa mãn ab+cd chia hết cho a-c. Chứng minh rằng ad+bc chia hết cho a-c.
b1: Cho a,b,c,d là các số nguyên thỏa mãn ab+cd chia hết cho a-c. Chứng minh rằng ad+bc cũng chia hết cho a-c
cho các số nguyên a,b,c,d thỏa mãn a+b+c+d=0
chứng minh rằng (ab-cd)(bc-ad)(ac-bd) là số chính phương
Vì a+b+c+d=0\(\Rightarrow a+b+c=-d\Rightarrow ac+bc+c^2=-cd\)
\(\Rightarrow\)\(ab-cd=ab+ac+bc+c^2=\left(a+c\right)\left(b+c\right)\)
Tương tự ta có \(bc-ad=\left(a+b\right)\left(a+c\right)\)
\(ac-bd=\left(a+b\right)\left(b+c\right)\)
Từ 3 điều trên ta suy ra đpcm
Cho a,b,c,d là các nguyên thỏa mãn \(ab+cd⋮a-c\)
Chứng minh :\(ad+bc⋮a-c\)
cho các số a,b,c,d thỏa mãn điều kiện ab/cd=a^2+b^2/c^2+d^2 chứng minh ad=bc hoặc ac=bd
Cho a,b,c,d là các số nguyên thỏa mãn: a+b = c+d và ab +1 = cd Chứng minh rằng : c= d
Cho các số nguyên a,b,c,d thỏa mãn a+b=c+d và ab+1=cd. Chứng minh rằng c=d
Cho các số nguyên a,b,c,d thỏa mãn ab-cd =1 và a+b=c+d . Chứng minh rằng: a=b
Cho 4 số a, b, c,d thỏa mãn:
a+b+c+d=0 và ab+ac+ad+bc+bd+cd=0
Chứng minh rằng: a=b=c=d.