Phan tich da thuc thanh nhan tu
4x3-4x2y-64x+xy2x2+xy-2y2-x+yPhan tich da thuc thanh nhan tu P=x^4 - 64x Các ban ghi tõ lời giải cho minh nha.thanks
p =x(x3 - 64) = x(x-4)( x2 +4x +16)
phan tich da thuc thanh nhan tu :xy(x-y)-xz(x+z)+yz(2x+z-y)
\(\left(x+y+z\right)\left(xy+yz+xz\right)-xyz=xy\left(x+y+z\right)-xyz+\left(yz+xz\right)\left(x+y+z\right)\)
\(=xy\left(x+y+z-z\right)+z\left(x+y\right)\left(x+y+z\right)\)
\(=xy\left(x+y\right)+z\left(x+y\right)\left(x+y+z\right)\)
\(=\left(x+y\right)\left[xy+z\left(x+y+z\right)\right]\)
\(=\left(x+y\right)\left(xy+xz+yz+z^2\right)\)
\(=\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)
\(=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
Phan tich da thuc thanh nhan tu
(xy-1)^2 -x^2-y^2
phan tich da thuc thanh nhan tu
1+x+y+z+xy+yz+zx+xyz
Phan tich da thuc thanh nhan tu
xy(x+y)+yz(y+z)+zx(x+z)+2xyz
Ta có : \(xy\left(x+y\right)+yz\left(y+z\right)+xz\left(x+z\right)+2xyz\)
\(=\left[xy\left(x+y\right)+xyz\right]+\left[yz\left(y+z\right)+xyz\right]+xz\left(x+z\right)\)
\(=xy\left(x+y+z\right)+yz\left(x+y+z\right)+xz\left(x+z\right)\)
\(=y\left(x+y+z\right)\left(x+z\right)+xz\left(x+z\right)\)
\(=\left(x+z\right)\left(xy+y^2+yz+xz\right)\)
\(=\left(x+z\right)\left(x+y\right)\left(y+z\right)\)
phan tich da thuc sau thanh nhan tu ab(x^2+y^2)-xy(a^2+b^2)
\(ab\left(x^2+y^2\right)-xy\left(a^2+b^2\right)\)
\(=abx^2+aby^2-a^2xy-b^2xy\)
\(=ax\left(bx-ay\right)+by\left(ay-bx\right)\)
\(=ax\left(bx-ay\right)-by\left(bx-ay\right)\)
\(\left(bx-ay\right)\left(ax-by\right)\)
hãy k nếu bạn thấy đây là câu tl đúng :)
phan tich da thuc thanh nhan tu (xy+1)^2 -(x-y)^2 ai giup minh voi
\(\left(xy+1\right)^2-\left(x-y\right)^2=\left(xy+1+x-y\right)\left(xy+1-x+y\right)\)
\(=x^2y^2+xy-x^2y+xy^2+xy+1-x+y+x^2y+x-x^2+xy-xy^2-y+xy-y^2\)
\(=x^2y^2+2xy-x^2-y^2+1\)
phan tich da thuc thanh nhan tu (x^2+xy)^2-(y^2+xy)^2
Ai giup minh voi a