Những câu hỏi liên quan
LN
Xem chi tiết
LH
Xem chi tiết
MA
Xem chi tiết
MA
Xem chi tiết
MA
Xem chi tiết
TC
29 tháng 12 2015 lúc 20:37

A=x^2-2x+y^2-2y-x-y+xy

A+3=x^2-2x+1+y^2-2y+1-x-y+xy+1=(x-1)^2+(y-1)^2+(x-1)(y-1)

dat x-1=a;y-1=b

=>A+3=a^2+b^2+ab =a^2+1/4b^2+ab+3/4b^2=(a+1/2b)^2+3/4b^2

=>A+3>=0 <=>x=1;y=1

=>Amin =-3<=> x=1;y=1

 

Bình luận (0)
MA
Xem chi tiết
CC
Xem chi tiết
NH
15 tháng 6 2015 lúc 11:39

\(P=\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+xy-x-y+1+2012=\left(x-1\right)^2+\left(y-1\right)^2-\left(x-1\right)\left(y-1\right)+2012\)

\(P=\left(\left(x-1\right)^2-\left(x-1\right)\left(y-1\right)+\frac{\left(y-1\right)^2}{4}\right)+\frac{3\left(y-1\right)^2}{4}+2012=\left(x-1-\frac{y-1}{2}\right)^2+\frac{3\left(y-1\right)^2}{4}+2012\ge2012\)

=> Min P=2012 <=> \(\frac{2x-2-y+1}{2}=0\Leftrightarrow2x-y-1=0\) và \(\frac{3\left(y-1\right)^2}{4}=0\Leftrightarrow y=1\)=> \(2x-1-1=0\Leftrightarrow x=1\)

 

Bình luận (0)
PV
Xem chi tiết
NQ
4 tháng 12 2020 lúc 0:16

ta có \(xy\le\left(\frac{x+y}{2}\right)^2\) và \(yz+xz=z\left(x+y\right)\le\frac{z^2+\left(x+y\right)^2}{2}\)

\(\Rightarrow5=xy+yz+xz\le\left(\frac{x+y}{2}\right)^2+\frac{z^2+\left(x+y\right)^2}{2}=\frac{3}{4}\left(x+y\right)^2+\frac{1}{2}z^2\)

Xét \(3x^2+3y^2+z^2\ge\frac{3}{2}\left(x+y\right)^2+z^2=2\left(\frac{3}{4}\left(x+y\right)^2+\frac{1}{2}z^2\right)\ge2\cdot5=10\)

dấu "=" xảy ra khi \(\hept{\begin{cases}x=y\\z=x+y\end{cases}\Leftrightarrow\hept{\begin{cases}x=y=\pm1\\z=\pm2\end{cases}}}\)

Bình luận (0)
 Khách vãng lai đã xóa
HN
Xem chi tiết
MA
Xem chi tiết
TP
7 tháng 1 2016 lúc 16:51

2A=[x2+2xy+y2-2(x+y)+1]+(x2-4x+4)+(y2-4y+4)-2018

=(x+y-1)+(x-2)2+(y-2)2-2018

Min=1006 tai x=2=y

 

Bình luận (0)