Chứng minh M là số chính phương biết:
M = 1+3+5+7+....+2n+1 ( n thuộc N)
Chứng minh rằng M là số chính phương, biết : M=1+3+5+7+......+(2n-1) (với n là số tự nhiên)
chứng tỏ rằng M là số chính phương biết: M=1+3+5+...+(2n-1) với n thuộc N
a)Tính tổng A = 1^2 + 2^2 + 3^2 +...+ 10^2
b) Chứng minh rằng M là số chính phương biết rằng: M = 1+3+5+...+ ( 2n - 1 ) với n thuộc N
trò gì mà vừa đi vừa chjy
a)Tính tổng A = 1^2 + 2^2 + 3^2 +...+ 10^2
b) Chứng minh rằng M là số chính phương biết rằng: M = 1+3+5+...+ ( 2n - 1 ) với n thuộc N
a) (Em xem lại , câu này em hỏi rồi nhé)
A = 1.1 + 2.(1 + 1) + 3. (1 + 2) + ...+ 10.(1 + 9)
A = 1 + 2 + 1.2 + 3 + 2.3 + ...+ 10 + 9.10
A = (1 + 2+ 3 + ...+ 10) + (1.2 + 2.3 + ...+ 9.10)
Tính 1 + 2 + 3 + ...+ 10 = (1 + 10).10 : 2 = 55
B = 1.2 + 2.3 + ...+ 9.10
3.B = 1.2.3 + 2.3.(4 - 1) + ...+ 9.10.(11- 8) = 1.2.3 + 2.3.4 - 1.2.3 + ...- 8.9.10 + 9.10.11
3.B = (1.2.3 + 2.3.4 + ...+ 9.10.11) - (1.2.3 + ...+ 8.9.10) = 9.10.11 => B = 330
Vây A = 55 + 330 = 385
b) Số số hàng: (2n - 1 - 1): 2 + 1 = n
M = (1 + 2n - 1). n : 2 = n2 => M là số chính phương
Chứng tỏ rằng M là số chính phương biết rằng:
M = 1+3+5+...+(2n-1) (n thuộc N)
chứng minh rằng :
a) S = 1 + 3 +5 +7 + ... + 2n - 1 với n thuộc N* là số chính phương .
b) S = 2 +4 +6 + ... + 2n với n thuộc N* không phải là số chính phương
chứng minh rằng M là số chính phương:
M=1+3+5+7+.....+(2n-1) với n là số tự nhiên
Cho A=1+3+5+7+...+(2n-1) (n thuộc N*)
Chứng minh rằng A là số chính phương.
số các số hạng là:
(2n-1-1):2+1=n(số)
tổng A là:(2n-1+1)n:2=n.n=n2 là số chính phương
=>A là số chính phương
=>đpcm
Cho A=1+3+5+7+...+(2n-1) (n thuộc N*)
Chứng minh rằng A là số chính phương.