Cho M=(100+1).(100+2).(100+3). ... .(100+100).Chứng minh rằng M là bội của 2100
Cho M=(100+1)*(100+2)*(100+3)*...*(100+100)
Chứng minh rằng M là bội của 2^100
M=1/2*3/4*5/6*....*99/100
N=2/3*4/5*6/7*...*100/101
a, chứng minh rằng: M<N
b, tính M*N
c, chứng minh rằng: M<1/10
cho M = 1+1/2+1/3+...+1/(2100-1). Chứng minh 50<M<100
- Chứng minh rằng: M = 1/3 + 2/32 + 3/33 + ... + 100/3100 < 3/4
- Chứng minh rằng: M = 1/3 + 2/32 + 3/33 + ... + 100/3100 < 3/4
Cho số
M = \(1^1+2^2+3^3+...+99^{99}+100^{100}\)
Chứng minh rằng số M có 201 chữ số và tính tổng hai chữ số đầu tiên của số M.
ta cần chứng minh điều này :
\(CMR:1^1+2^2+3^3+4^4+...+n^n< \left(n+1\right)^{n+1}\) (1)
+) với \(n=1\) thì (1) đúng
+) giả sử (1) đúng với \(n=k\) tức là : \(1^1+2^2+...+k^k< \left(k+1\right)^{k+1}\)
ta cũng có thể chứng minh được (1) đúng với \(n=k+1\)
tức : \(1^1+2^2+...+k^k+\left(k+1\right)^{k+1}< \left(k+2\right)^{k+2}\)
thật vậy : ta có \(VT< 2\left(k+1\right)^{k+1}< \left(k+2\right)\left(k+2\right)^{k+1}=\left(k+2\right)^{k+2}\)
\(\Rightarrow\) (đpcm)
áp dụng cho bài toán ta có :
\(1^1+2^2+...+99^{99}< 100^{100}\)
\(\Leftrightarrow1^1+2^2+...+99^{99}+100^{100}< 2.100^{100}\)
mà ta để dàng thấy \(2.100^{100}\) có 201 chữ số \(\Rightarrow\) (đpcm)
mk chưa đọc hết đề nên giải còn thiếu ! nên h mk sẽ giải cho hết luôn nhé
áp dụng bđt vừa chứng minh ta có :
vì \(M< 2.100^{100}\Rightarrow\) số hạng đầu là số 1
theo phương pháp cũ ta có thể chứng minh :
\(1^1+2^2+...+n^n< \left(n+1\right)^n\)
từ đó ta có thể thấy được :
\(1^1+2^2+...+99^{99}< 100^{99}\) \(\Rightarrow M< 100^{100}+100^{99}\)
\(\Rightarrow\) số hạng thứ 2 là số 0
\(\Rightarrow\) tổng 2 chữ số đầu tiên của số M là : \(1+0=1\)
vậy ....
Cho số
M = \(1^1+2^2+3^3+...+99^{99}+100^{100}\)
Chứng minh rằng số M có 201 chữ số và tính tổng hai chữ số đầu tiên của số M.
Chứng Minh Rằng
a. cho biểu thức A= 3 + 3^2+ 3^3+ 3^4+...+ 3^100 và B= 3^100-1.Chứng Minh rằng : A<B
b. Cho A= 1+4+4^2+...+4^99, B= 4^100. Chứng Minh Rằng : A<B/3
\(A=3+3^2+3^3+...+3^{100}\)
\(\Leftrightarrow3A=3^2+3^3+3^4+3^5+....+3^{101}\)
\(\Leftrightarrow3A-A=\left(3^2+3^3+3^4+3^5+...+3^{101}\right)-\left(3+3^2+3^3+3^4+...+3^{100}\right)\)
\(\Leftrightarrow2A=3^{101}-3\)
\(\Leftrightarrow A=\frac{3^{101}-3}{2}< 3^{100}-1\)
\(\Leftrightarrow A< B\)
a. tính A = 3+3^2+3^3+3^4+.....+3^100
3A=3^2+3^3+3^4+3^5+....+3^100
3A-A=(3^2+3^3+3^4+....+3^101)-(3+3^2+3^3+3^4+.....+3^100)=3^101-3=3^100
mà B=3^100-1 => A<B
\(A=1+4+4^2+...+4^{99}\)
\(\Leftrightarrow4A=4+4^2+4^3+...+4^{100}\)
\(\Leftrightarrow3A=4^{100}-1\)
\(\Leftrightarrow A=\frac{4^{100}-1}{3}< \frac{4^{100}}{3}\)
hay A<B (đpcm)
cho A=1/1!+1/2!+.....+1/100!. Chứng minh rằng 3!- M > 4