Những câu hỏi liên quan
DH
Xem chi tiết
YN
11 tháng 9 2021 lúc 20:59

a. tìm a là số tự nhiên để 17a+8 là số chính phương

Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)

\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)

\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)

Bình luận (0)
 Khách vãng lai đã xóa
VA
Xem chi tiết
PT
Xem chi tiết
NQ
22 tháng 1 2018 lúc 21:48

+, Nếu n=3 thì A = 9 = 3^2 ( t/m )

+, Nếu n=4 thì A = 33 ( ko t/m )

+, Nếu n >= 5 thì A sẽ có tận cùng chữ số tận cùng của 1!+2!+3!+4! nên A có chữ số tận cùng là 3 (vì 5! ; 6! ; ... ; n! đều có chữ số tc là 0)

=> A ko phải là số chinhd phương 

Vậy n = 3

Tk mk nha

Bình luận (0)
NT
27 tháng 10 2024 lúc 19:46

:)

Bình luận (0)
LH
Xem chi tiết
DH
15 tháng 1 2021 lúc 21:32

Với \(n\ge5\)

\(1!+2!+3!+4!+5!+...+n!\equiv\left(1!+2!+3!+4!\right)\left(mod10\right)\equiv3\left(mod10\right)\)

Vì \(k!=1.2.3.....k=\left(2.5\right).1.3.4.6.....k\)(Với \(k\ge5\))

mà số chính phương không thể có tận cùng là \(3\)nên loại. 

Tính trực tiếp với các trường hợp \(n=1,2,3,4\)ta được \(n=1\)và \(n=3\)thỏa mãn. 

Bình luận (0)
 Khách vãng lai đã xóa
PH
Xem chi tiết
NC
22 tháng 10 2015 lúc 19:27

Với n = 1  1! = 1, là số chính phương.

Với n = 2  1! + 2! = 3, không là số chính phương.

Với n = 3  1! + 2! + 3! = 9, là số chính phương.

Với n = 4  1! + 2! + 3! + 4! = 33, không là số chính phương.

Ta thấy, 5!, 6!, 7!,... đều có tận cùng là 0:

Với n  5  1! + 2! + 3! + 4! + ... + n! = 33 + ...0¯¯¯¯¯¯ = ...3¯¯¯¯¯¯ không là số chính phương.

Vậy n = 1; 3

 

Bình luận (0)
TT
Xem chi tiết
NV
Xem chi tiết
DY
Xem chi tiết
ST
14 tháng 1 2018 lúc 17:04

Câu hỏi của Trương Anh Tú - Toán lớp 6 - Học toán với OnlineMath

Bình luận (0)
PL
8 tháng 2 2018 lúc 9:36

Nếu n=0,suy ra A=0(thỏa mãn)

Nếu n=1 suy rs A=0(thỏa mãn)

Nếu n>1,ta có

A=n.(n^3-2.n^2+3n-2)

A=n.[n.(n^2-2n+3)-2]

A=n.[n.(n-1)^2+2.(n-1)]

A=n.(n-1).[n.(n-1)+2]

Ta thấy:[n.(n-1)]^2<A<[n.(n-1)+1]^2     (tự chứng minh)

Suy ra A không phải là số chính phương với n>1

                                Vậy n={0;1}

Bình luận (0)
PE
Xem chi tiết
H24
28 tháng 2 2018 lúc 22:01

Đặt P = n4 + n3 + n2 + n + 1 

Với n = 1 => A = 3 => loại

Với n \(\ge\)2 ta có: 

(2n2 + n - 1) < 4A \(\le\)(2n2 + n)2 

=> 4A = (2n2 + n)2 

Vậy: n = 2 thỏa mãn đề bài

*P/s: Mik ko chắc*

Bình luận (0)
H24
26 tháng 7 2020 lúc 10:49

Đáp án sai mà mn

Thay n=2 ta có

\(n^4+n^3+n^2+n+1\)\(=31\): ko là số chính phương

Bình luận (0)
 Khách vãng lai đã xóa
H24
26 tháng 7 2020 lúc 10:59

Đáp án là n=3

Ta cũng dùng nguyên lý kẹp để tìm n

Đặt A=\(n^4+n^3+n^2+n+1\)

Xét n=1,2=> ko tm

Xét n=3=>A=11^2 (tm)

Ta cm n>3 thì A là ko là số chính phương

.....

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết