cmr: A = 111...111-10n (có n số 1) chia hết cho 9
111....1( n chữ số 1)-10n chia hết cho 9
Ta có tổng các chữ số của \(11...111\left(n\text{ chữ số }1\right)\) là \(1\cdot n=n\)
Tổng các chữ số của \(10n\) là \(n\)
\(\Rightarrow111...11\equiv n\left(mod9\right)\\ 10n\equiv n\left(mod9\right)\\ \Rightarrow111...1-10n\equiv0\left(mod9\right)\left(đpcm\right)\)
Chứng tỏ rằng:
A) 102016 + 8 chia hết cho 9
B) 111.....111 chia hết cho 9
( Với điều kiện có 27 chữ số 1 )
A) 102016 + 8 chia hết cho 9
Ta có : 10000....0 + 8
= 1000...8
Vậy ( 1 + 0 + 0 + 0 + ...+ 0 + 8 ) = 9 chia hết cho 9.
B) 111...111 chia hết cho 9 ( với điều kiện có 27 chữ số 1)
Ta có : 1 + 1 + 1 + ... + 1 + 1 +1 = ( 27 : 2 ) x 2
= 13,5 x 2
= 27
Ta thấy : 27 chia hết cho 9 nên 111...111 chia hết cho 9
A) 102016 + 8 chia hết cho 9
Ta có: 102016 + 8 = 1........0000 + 8
= 1........0008
Ta có: (1 + 0 + 0 + ..... + 0 + 0 + 8) = 9 chia hết cho 9
a) Vì tổng các chữ số là 9, => chia hết cho 9
b) ----_______________27, =>chia hết cho 9
Tk cho mìn nha
CMR :
a, 111...1 - n chia hết cho 9
... là n chữ số 1
b, 888...8 - n chia hết cho 9
... là n chữ số 8
CMR;111........1-10n chia hết cho 9 (có n số 1)
Bài 1 : Khi chia số tự nhiên a cho 148 ta được thương là 111 . Hỏi a có chia hết cho 37 không ?
CMR;111........1-10n chia hết cho 9 (có n số 1)
B= 106n+2 + 103n+1 +1
CMR : a) B chia hết cho 111 với n là số tự nhiên
b) B chia hết cho 91 với n lẻ
a) 10^(6n+2) +10^(3n+1) +1 chia hết cho 111 (3)
Đặt S(n) = 10^(6n+2) +10^(3n+1) +1
Với n= 0 thì S(0) = 10^2 +10^1 +1 =111 cia hết cho 111
Vậy (3) đúng với n=0
Giả sử (3) đúng với n=k (k thuộc N*) tức là:
S(k) = 10^(6k+2) +10^(3k+1) +1 chia hết cho 111
Ta cần c/m (3) đúng với n= k+1 nghĩa là phải c/m:
S(k+1) = 10^(6.(k+1) +2) +10^ (3(k+1)+1) +1 chia hết cho 111
Thật vậy ta có:
S(k+1) = 10^( 6k+8) +10^(3k+4) +1
= 10^(6k+2).10^6 +10^(3k+1).10^3 +1
=> S(k+1) - S(k) = 10^(6k+2). ( 10^6 - 1) + 10^(3k+1).(10^3 -1)
= 10^(6k+2).999999 + 10^(3k+1).999
Do 999999 và 999 đều chia hết cho 111 nên S(k+1) - S(k) chia hết cho 111
Mặt khác S(k) chia hêt cho 111
=> S(k+1) chia hết cho 111 (đpcm)
Khi chia số tự nhiên a cho 48 được số dư là
111. Hỏi a có chia hết cho 37 không?
Giúp mình nha!
vì a chia 48 dư 111 nên
a=48k+111
48 không chia hết cho 37
111 chia hết cho 37
=>a không chia hết cho 37
Mọi người ráng giúp mình với ạ. Mọi người làm được bài nào thì làm không cần phải làm hết đâu ạ.
Bài 1:
a) CMR: Tổng lập phương 3 số nguyên liên tiếp chia hết cho 9.
b) 111....1(2n chữ số 1)
222....2 (n chữ số 2)
CMR: B= 111.....1 - 222....2 là số chính phương. Bài 2: Tìm x,y thỏa:
a) x^2+y^2-4*x+4*y+5=0
b) x^2+y^2=x+y+8
c) x^2+x*y+y^2=x^2*y^2