Những câu hỏi liên quan
NP
Xem chi tiết
CH
23 tháng 6 2017 lúc 9:29

1) \(A=\left(\sqrt{7-\sqrt{21}+4\sqrt{5}}\right)^2=7-\sqrt{21}+4\sqrt{5}\)

\(B=\left(\sqrt{5}-1\right)^2=6-2\sqrt{5}\)

\(\Rightarrow A-B=1-\sqrt{21}+6\sqrt{5}=\left(1+\sqrt{180}\right)-\sqrt{21}>0\)

\(\Rightarrow A>B\Rightarrow\sqrt{7-\sqrt{21}+4\sqrt{5}}>\sqrt{5}-1\)

2) \(C=\left(\sqrt{5}+\sqrt{10}+1\right)^2=5+10+1+10\sqrt{2}+2\sqrt{5}+2\sqrt{10}\)

\(=26+10\sqrt{2}+2\sqrt{5}+2\sqrt{10}>26+10>35=\left(\sqrt{35}\right)^2\)

Vậy \(\sqrt{5}+\sqrt{10}+1>\sqrt{35}\)

3) \(\left(\frac{15-2\sqrt{10}}{3}\right)^2=\frac{225-60\sqrt{10}+40}{9}=\frac{265-60\sqrt{10}}{9}=\frac{265}{9}-\frac{20\sqrt{10}}{3}< 15\)

Vậy nên \(\frac{15-2\sqrt{10}}{3}< \sqrt{15}\)

Bình luận (0)
LL
Xem chi tiết
NO
Xem chi tiết
NO
25 tháng 9 2018 lúc 15:42

Xin lỗ nhé thừa số 4 bé ở câu a

Bình luận (0)
DB
25 tháng 9 2018 lúc 15:50

\(a,\sqrt{2}+\sqrt{11}< \sqrt{3}+\sqrt{16}=\sqrt{3}+4\)

Bình luận (0)
LG
Xem chi tiết
LT
5 tháng 9 2019 lúc 13:28

\(\sqrt[3]{\left(1-\sqrt{3}\right)\left(4-2\sqrt{3}\right)}=\sqrt[3]{\left(1-\sqrt{3}\right)\left(\sqrt{3}-1\right)^2}\)=\(\sqrt[3]{\left(1-\sqrt{3}\right)^3}\)=1-\(\sqrt{3}\)

\(\sqrt[3]{\left(1-\sqrt{5}\right)\left(6-2\sqrt{5}\right)}=\sqrt[3]{\left(1-\sqrt{5}\right)\left(\sqrt{5}-1\right)^2}\)=\(\sqrt[3]{\left(1-\sqrt{5}\right)^3}\)=1-\(\sqrt{5}\)

Ta thấy \(\sqrt{5}>\sqrt{3}\)nên 1-\(\sqrt{3}\)>\(1-\sqrt{5}\)

Vậy \(\sqrt[3]{\left(1-\sqrt{3}\right)\left(4-2\sqrt{3}\right)}\)>\(\sqrt[3]{\left(1-\sqrt{5}\right)\left(6-2\sqrt{5}\right)}\)

Bình luận (0)
DH
Xem chi tiết
PB
14 tháng 8 2018 lúc 17:50

a. \(\sqrt{35}+\sqrt{99}< \sqrt{36}+\sqrt{100}=6+10=16\)

\(\Rightarrow\sqrt{35}+\sqrt{99}< 16\)

b. \(\sqrt{24}< \sqrt{25}=5\)

\(\sqrt{5}+\sqrt{10}>\sqrt{4}+\sqrt{9}=2+3=5\)

\(\Rightarrow\sqrt{24}< \sqrt{5}+\sqrt{10}\)

Bình luận (0)
TD
Xem chi tiết
HB
25 tháng 10 2023 lúc 12:20

Jdkdk

Jidkri

Bình luận (0)
CD
Xem chi tiết
H24
10 tháng 8 2020 lúc 15:30

a)

Có: \(1+2\sqrt{2}=1+\sqrt{8}< 1+\sqrt{9}=1+3=4\)

Vậy \(4>1+2\sqrt{2}\)

b) Có: \(2\sqrt{6}-1=\sqrt{24}-1< \sqrt{25}-1=5-1=4\)

Vậy \(4>2\sqrt{6}-1\)

c) Có: \(3\sqrt{3}=\sqrt{27}< \sqrt{28}=2\sqrt{7}\) 

=> \(3\sqrt{3}< 2\sqrt{7}\)

=> \(-3\sqrt{3}>-2\sqrt{7}\)

Bình luận (0)
 Khách vãng lai đã xóa
DH
Xem chi tiết
LD
5 tháng 4 2019 lúc 14:29

Ta có

\(\left(2+\sqrt{3}\right)^2=2^2+2\cdot2\cdot\sqrt{3}+3=7+4\sqrt{3}\)

\(\Rightarrow2+\sqrt{3}=\sqrt{7+4\sqrt{3}}\)

Ta có \(7+4\sqrt{3}>5+4\sqrt{3}\)

\(\Leftrightarrow\sqrt{7+4\sqrt{3}}>\sqrt{5+4\sqrt{3}}\)

\(\Rightarrow2+\sqrt{3}>\sqrt{5+4\sqrt{3}}\)

Bình luận (0)
NN
Xem chi tiết