cho x=2011. Tính giá trị của A
A=\(x^{2011}-2010x^{2010}-2010x^{2009}-...-2010x+1\)
1.Tìm GTLN của P=\(\dfrac{x^2}{1+x^4}\)
2.Cho x=2011.Tính giá trị của biểu thức:
A=\(x^{2011}-2010x^{2010}-2010x^{2009}-...-2010x+1\)
3.Cho 3 số a,b,c đều khác 0 và a+b+c=0
Tính giá trị của biểu thức:A=\(\dfrac{ab}{a^2+b^2-c^2}+\dfrac{bc}{b^2+c^2-a^2}+\dfrac{ac}{a^2+c^2-b^2}\)
Các bạn làm bài nào cũng đc nha giúp mình nhanh lên nha
Bài 2:
Ta có : \(2010=2011-1=x-1\)
Thay \(2010=x-1\) vào biểu thức A ,có :
\(x^{2011}-\left(x-1\right)x^{2010}-\left(x-1\right)x^{2009}-...-\left(x-1\right)x+1\)
\(=x^{2011}-x^{2011}+x^{2010}-x^{2010}+x^{2009}-...-x^2+x+1\)
\(=x+1\)
\(=2011+1=2012\)
Vậy giá trị biểu thức A là 2012
Bài 3:
\(a+b+c=0\)
\(\Rightarrow a+b=-c\)
\(\Rightarrow\left(a+b\right)^2=\left(-c\right)^2\)
\(\Rightarrow a^2+2ab+b^2=c^2\)
\(\Rightarrow a^2+b^2-c^2=-2ab\left(1\right)\)
Tương tự :
\(a+b+c=0\)
\(\Rightarrow a+c=-b\)
\(\Rightarrow\left(a+c\right)^2=\left(-b\right)^2\)
\(\Rightarrow a^2+2ac+c^2=b^2\)
\(\Rightarrow a^2+c^2-b^2=-2ac\left(2\right)\)
\(a+b+c=0\)
\(\Rightarrow b+c=-a\)
\(\Rightarrow\left(b+c\right)^2=\left(-a\right)^2\)
\(\Rightarrow b^2+c^2-a^2=-2bc\left(3\right)\)
Từ (1)(2)(3)
\(\Rightarrow A=\dfrac{-ab}{2ab}+\dfrac{-bc}{2bc}+\dfrac{-ac}{2ac}\)
\(=\dfrac{-abc-abc-abc}{2abc}=\dfrac{-3abc}{2abc}=-\dfrac{3}{2}\)
Bài 2: Thực hiện phép tính
a/ S= 1+2+2^2+2^3+2^4+2^5+...+2100
b/ Cho x= 2^2012-2^2011-2^2010-2^2009-...-2-1. Tính 2010x
a) \(S=1+2+2^2+...+2^{100}\)
\(2S=2+2^2+2^3+...+2^{101}\)
\(2S-S=\left(2+2^2+...+2^{101}\right)-\left(1+2+...+2^{100}\right)\)
\(S=2^{101}-1\)
b) \(X=2^{2012}-2^{2011}-...-2-1\)
\(X=2^{2012}-\left(1+2+...+2^{2011}\right)\)
Đặt \(X=2^{2012}-Y\)
Ta có :
\(Y=1+2+...+2^{2011}\)
\(2Y=2+2^2+...+2^{2012}\)
\(2Y-Y=\left(2+2^2+...+2^{2012}\right)-\left(1+2+...+2^{2011}\right)\)
\(Y=2^{2012}-1\)
\(\Rightarrow X=2^{2012}-2^{2012}+1\)
\(\Rightarrow X=1\)
\(\Rightarrow2010X=2010\)
Giải phương trình sau:
\(\frac{2010x+2010}{x^2+x+1}-\frac{2010x-2010}{x^2-x+1}=\frac{2011}{x.x^6+x^2+1}\)
Giải phương trình :
\(\frac{2010x+2010}{x^2+x+1}+\frac{2010x-2010}{x^2-x+1}=\frac{2011}{x.\left(x^4+x^2+1\right)}\)
-Ta thấy \(x^4+x^2+1=x^4-x+x^2+x+1=\left(x^2-x\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)=\left(x^2-x+1\right)\left(x^2+x+1\right)\)
Vậy PT sẽ thành
\(\frac{2010x\left(x^3+1\right)}{x\left(x^4+x^2+1\right)}+\frac{2010x\left(x^3-1\right)}{x\left(x^4+x^2+1\right)}=\frac{2011}{x\left(x^4+x^2+1\right)}\)
\(\Leftrightarrow2.2010x^4=2011\Leftrightarrow x=...\)
cho hàm số y=f(x)=/x^2-2010x-2011/
Tính f(1),f(-2010)
Bài làm
Hàm số: y=f(x)=| x2 - 2010x - 2011 |
* Với f(1) = | 12 - 2010 x 1 - 2011 |
= | 1 - 2010 - 2011 |
= | -4020 |
= 4020
Vậy với f(1) thì = 420
* Với f(-2010) = | ( -2010 )2 - 2010 x ( -2010 ) - 2011 |
= | -4040100 - ( -4040100 ) - 2011 |
= | 0 - 2011 |
= - 2011
Vậy với f(-2010) thì bằng -2011
# Chúc bạn học tốt #.
\(y=f\left(x\right)=\left|x^2-2011x+x-2011\right|\)
\(y=f\left(x\right)=\left|x\left(x-2011\right)+\left(x-2011\right)\right|\)
\(y=f\left(x\right)=\left|\left(x+1\right)\left(x-2011\right)\right|\)
Thay vào mà tính thôi bạn
tìm đa thức dư của phép chia đa thức x^2011+x^2010+2010x cho x^2-1
tính giá trị của biểu thức
A=\(x^{15}-2010x^{14}+2010x^{13}-2010x^{12}+2010x^{11}-...+2010x-2010\)
Chi P(x)= x10 - 2010.x9 + 2010x8 -2010x^7+...+2010x^2-2010x-1
Tính giá trị P(x) tại x=2009
Thay 2010 = x + 1 vào P ( x ),ta có :
\(^{x^{10}-\left(x+1\right)x^9+\left(x+1\right)x^8-\left(x+1\right)x^7+...+\left(x+1\right)x^2-\left(x+1\right)x-1}\)
= x10 - x10 - x9 + x9 + x8 - x8 - x7 + ... + x3 + x2 - x2 + x - 1
= x + 1
= 2009 + 1
= 2010
Thay 2010 = x+ 1 vào P( x) ,có :
\(x^{10}-\left(x+1\right)x^9+\left(x+1\right)x^8-\left(x+1\right)x^7+...+\left(x+1\right)x^2-\left(x+1\right)x-1\)
= \(x^{10}-x^{10}-x^9+x^9+x^8-x^8-x^7+...+x^3+x^2-x^2+x-1\)
= x+1
= 2009 + 1
= 2010
2010*(2011-2010x^2)^2=2011-x
sorry thiếu đề