Tìm x < 0 thoả mãn: \(\left|x-\frac{3}{5}\right|=2\frac{1}{4}\)
Tìm x<0 thoả mãn: \(\left|x-\frac{3}{5}\right|=2\frac{1}{4}\)
a,cho các số x,y,z khác 0 thoả mãn
\(x-2y+\frac{z}{y}=z-2x+\frac{y}{x}=x-2z-\frac{y}{z}\).Tính giá trị biểu thức A=\(\left(1+\frac{y}{x}\right)\times\left(1+\frac{y}{x}\right)=\left(1+\frac{x}{z}\right)+2020\)
b, tìm các số tự nhiên x,y thoả mãn xy+4x=35+5y
c, tìm các số tự nhiên x,y thoả mãn 2^/x/+y^2+y=2x+1
Tìm x thoả mãn:
a)\(\frac{1}{2}x-\frac{3}{4}x-\frac{7}{3}=-\frac{5}{6}\)
b)\(\frac{4}{5}x-x-\frac{3}{2}x+\frac{4}{3}=\frac{1}{2}-\frac{6}{5}\)
c)\(\frac{1}{1.2}+\frac{1}{2.3}+......+\frac{1}{x.\left(x+1\right)}=\frac{2009}{2010}\)
d)\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=1\frac{2013}{2015}\)
e)\(\frac{1}{3.5}+\frac{1}{5.7}+.....+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{100}{609}\)
mk làm câu c cho nó dễ
c)1/1.2+1/2.3+...+1/x.(x+1)=2009/2010
=1-1/2+1/2-1/3+...+1/x-1/x+1=2009/2010
=1-1/x+1=2009/2010
=1/x+1=1-2009/2010
=1/x+1=1/2010
=) x+1=2010
x =2010-1
x =2009
Đề cho dài :v. Lần sau đăng từ từ nhé bạn, hôm qua đến giờ mình giải không hết đó =(((
a) \(\frac{1}{2}.x-\frac{3}{4}.x-\frac{7}{3}=-\frac{5}{6}=\frac{-5}{6}\)
\(\frac{1}{2}.x-\frac{3}{4}.x=\frac{-5}{6}+\frac{7}{3}=\frac{3}{2}\)
\(\Leftrightarrow x\left(\frac{1}{2}-\frac{3}{4}\right)=\frac{3}{2}\Leftrightarrow x.\frac{-1}{4}=\frac{3}{2}\)
\(x=\frac{3}{2}:\frac{-1}{4}=-6\)
b) \(\frac{4}{5}.x-x-\frac{3}{2}.x+\frac{4}{3}=\frac{1}{2}-\frac{6}{5}=-\frac{7}{10}\)
\(\Leftrightarrow x\left(\frac{4}{5}-\frac{3}{2}.\frac{4}{3}\right)=x\left(\frac{4}{5}-2\right)=-\frac{7}{10}\)
\(\Leftrightarrow x.\frac{-6}{5}=-\frac{7}{10}\)
\(x=-\frac{7}{10}:\frac{-6}{5}=\frac{7}{12}\)
c) \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{x\left(x+1\right)}=\frac{2009}{2010}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}...+\frac{1}{x}-\frac{1}{x+1}=\frac{2009}{2010}\)
\(=1-\frac{1}{x+1}=\frac{2009}{2010}\)
\(\frac{1}{x+1}=1-\frac{2009}{2010}=\frac{1}{2010}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{2010-1}=\frac{1}{2009}\). Vậy x= 2009
d) \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=1\frac{2013}{2015}=\frac{4023}{2015}\)
\(=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{4023}{2015}\)
\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{x\left(x+1\right)}=\frac{4023}{2015}\)
\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{4023}{2015}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{4023}{2015}\)
\(\frac{1}{2}-\frac{1}{x+1}=\frac{4023}{2015}:2=\frac{4023}{4030}\)
\(\frac{1}{x+1}=\frac{1}{2}-\frac{4023}{4030}=\frac{-1004}{2015}=\frac{1004}{-2015}\)
\(x+1=\hept{\begin{cases}2015\\-2015\end{cases}}\Rightarrow x=\hept{\begin{cases}2014\\-2016\end{cases}}\)
e) Bạn tự làm, nhiều quá mình làm không hết
Giải chi tiết hộ mk:
1/Tìm x, y nguyên thoả mãn \(x+y+xy+2=x^2+y^2\)
2/Cho a,b,c là các số thực dương thoả mãn điều kiện abc=1.chứng minh rằng:
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{3}{4}\)
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\)
Ta có:
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge\frac{3a}{4}\)
\(\Leftrightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}\ge\frac{6a-b-c-2}{8}\)
Tương tự ta có: \(\hept{\begin{cases}\frac{b^3}{\left(1+c\right)\left(1+a\right)}\ge\frac{6b-c-a-2}{8}\\\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{6c-a-b-2}{8}\end{cases}}\)
Cộng vế theo vế ta được
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{c^3}{\left(1+a\right)\left(1+b\right)}\ge\frac{6a-b-c-2}{8}+\frac{6b-c-a-2}{8}+\frac{6c-a-b-2}{8}\)
\(=\frac{a+b+c}{2}-\frac{3}{4}\ge\frac{3}{2}.\sqrt[3]{abc}-\frac{3}{4}=\frac{3}{2}-\frac{3}{4}=\frac{3}{4}\)
Cho x,y>0 thoả mãn x+y=1. Tìm GTNN của biểu thức: P=\(\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)
1)tìm các số nguyên x và y thỏa mãn:\(y^2=x^2+x+1\)
2)cho các số thực x và y thỏa mãn \(\left(x+\sqrt{a+x^2}\right)\left(y+\sqrt{a+y^2}\right)\)=a
tìm giá trị biểu thức \(4\left(x^7+y^7\right)+2\left(x^5+y^5\right)+11\left(x^3+y^3\right)+2016\)
3)cho x;y là các số thực khác 0 thỏa mãn x+y khác 0
cmr \(\frac{1}{\left(x+y\right)^3}\left(\frac{1}{x^3}+\frac{1}{y^3}\right)+\frac{3}{\left(x+y\right)^4}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\frac{6}{\left(x+y\right)^5}\left(\frac{1}{x}+\frac{1}{y}\right)\)\(=\frac{1}{x^3y^3}\)
4)cho a,b,c là các số dương.cmr\(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}+\sqrt{\frac{b^3}{b^3+\left(a+c\right)^3}}+\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\ge1\)
post từng câu một thôi bn nhìn mệt quá
Tìm só nguyên x thoả mãn:
a)\(3\frac{1}{3}:2\frac{1}{2}-1< x< 7\frac{2}{3}.\frac{3}{7}+\frac{5}{2}\)
b)\(\frac{1}{2}-\left(\frac{1}{3}+\frac{1}{4}\right)< x< \frac{1}{48}-\left(\frac{1}{16}-\frac{1}{6}\right)\)
Mk cần gấp nha
1) Cho x,y,z>0 thoả mãn : xyz<=1. Chứng minh rằng: \(\frac{x\left(1-y^3\right)}{y^3}\)+ \(\frac{y\left(1-z^3\right)}{z^3}\)+\(\frac{z\left(1-x^3\right)}{x^3}\)>=0
2) Cho x, y, z là các số thực dương thỏa mãn x ≥ z. CMR: xz /(y^2 + yz) + y^2 / (xz + yz) + (x + 2z)/(x + z) ≥ 5/2
Cho 2 số x, y > 0 thoả mãn x+y = 1.
Tìm GTNN của \(P=\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\)
xin nhá xin nhá =))
Áp dụng bất đẳng thức Cauchy-Schwarz và giả thiết x+y=1 ta có :
\(P=\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\ge\frac{\left(2x+\frac{1}{x}+2y+\frac{1}{y}\right)^2}{2}=\frac{\left[2\left(x+y\right)+\left(\frac{1}{x}+\frac{1}{y}\right)\right]^2}{2}\ge\frac{\left(2+\frac{4}{x+y}\right)^2}{2}=\frac{\left(2+4\right)^2}{2}=18\)
Đẳng thức xảy ra <=> x=y=1/2
Vậy ...